
Zeppelin Time: Exploring the Future of Mixed

Initiative in Educational Games

Philip Hanson Sarah Judd Charles Rich

May 5, 2009

1 Project Overview

Our project creates a game designed to teach students about basic programming
and object-oriented concepts using text-based mixed-initiative interaction. We
call this type of play interaction a script adventure game. Students (or players –
we will use the words interchangeably in this paper) interact with the game world
through a text interface to a JavaScript interpreter and a visual representation
of the game world.

The game is built on the CETask reference implementation of the CEA-2018
task model standard [1]. Each room in the game is a goal or subgoal within
the hierarchical task network. Subgoals within a room are designed to teach
specific programming concepts, and the game interacts with students via the
text interface to report progress or offer hints.

The overall interface is reminiscent of text adventure games, and the concept
is similar, except for the use of a JavaScript interpreter rather than a natural
language parser. Students interact with objects in the virtual environment
through the use of JavaScript “objects” whose state is monitored by the game.

With regard to mixed initiative behavior, if the student selects an object
to manipulate and then attempts to perform the task or subgoal but fails, the
student can ask for a hint. The system will then offer progressively more infor-
mative hints as to the proper way of accomplishing the goal. Once the system
runs out of hints, the player can request for the system to perform the task,
at which point the system will explain what the proper method is and then
perform it.

2 Our Game - Zeppelin Time

2.1 Command-Line Interface

To test our game’s task model, we created a custom command-line interpreter
by subclassing the edu.wpi.cetask.guide.Guide class. To the standard com-
mands we added hint, a command that allows the player to request a hint from
the system.

1



The organization of the task model reflects the structure of our game. There
is a single overarching goal for the model called Game. To start playing, users
start the Game task. Once Game is complete, the game is over. Each room
within the game is a subgoal of the main goal, and the active ‘room goal’ is used
to track which room the player is in. For Zeppelin Time, these room goals are
Zeppelin, Airlock, and Office. These subgoals correspond to the three areas in
our game: an airship cargo bay, an airlock between the zeppelin and a building,
and finally an office within the building.

Each room goal has two or three subgoals corresponding to activities within
the room. Since we are using the game to teach programming skills, players
are supposed to perform these activities independently. Therefore, the post-
conditions of these ‘activity subgoals’ are satisfied when the player has done the
activity. Below each activity goal is a set of two alternative decompositions: a
primary decomposition in which the player is expected to act and a secondary
in which the system will perform the required actions on the player’s behalf.

In a primary activity goal decomposition, where the player is expected to
act, there is an external “waiting” task with the same post-condition as the
activity goal. There are also several “hint” tasks that must be performed by
the system. These tasks become active when the player asks for a hint using
the hint command, which increments an internal hints-asked-for counter used
by the hint tasks and tries to execute the next task. Each hint task has a
grounding script that prints a hint to the console.

After the player has used all the available hints within an activity, the final
system task in the branch has a grounding script that causes the decomposition
to fail. Thus, if a player runs out of hints, the system will fail over to the
alternative decomposition where the system performs the action.

2.2 Graphical Interface

The GUI consists of four parts. At the top of the screen, the user sees a rep-
resentation of the world they currently exist in, often with some flavor text. In
the second box, they see a description of what they are supposed to do at the
current moment in this world. The next box consists of a command prompt
for entering solutions to the puzzles and a button for executing these solutions.
The final box displays hints, and messages explaining

3 General Format

In order for this project to be truly usable, it has to be adaptable. While we
assume those teaching programming will have at least as much programming
ability as the students they intend to teach, we do not assume they will have
the time to figure out the CEA task engine. To this end, we provided the option
of a general format.

Any game using this system will have a basic structure: a game composed
of rooms which are themselves composed of puzzles. The rooms, in addition to

2



furthering the plot, each have a programming theme associated with them. This
is not obvious in our general format at the moment, but it is the idea behind
them.

3.1 Puzzles

Puzzles provide the backbone of the game. They need to be solved through
understanding the programming concepts. They consist of a Description, post-
condition hints and a solution

3.1.1 Description

The Description contains both the in-game reason for solving the current puzzle,
and some meta-information required to solve it. For example, the very first
puzzle in ZeppelinTime requires the user to set a variable that tells the system
his/her name. The description, therefore, reads both ”Enter your name so we
can recognize you” and ”the variable name that should be set is spyName”

3.1.2 Postcondition

In the CEA taskmodel, if the user has already done something, there is no
reason to run the task for it. Each puzzle has a postcondition - when the user
has completed the task contained within it, he/she does not need any further
hints, and can continue to the next puzzle.

3.1.3 Hints

Hints help encourage a user when he/she is lost. It keeps them working on
the problem, giving them the chance to try given more information rather than
quickly giving up. Hints should give progressively more information about the
solution to the puzzle away.

3.1.4 Solution

The solution consists of two pieces: first the computer explains what it is doing
in text format. This information goes between the text tags. Teachers should
place the script that runs the actual solution between script tags.

4 Typical run through

4.1 Playing the Game

First, the user is presented with a puzzle. A few possible cases can occur

1. The user understands how to do the problem immediately: S/he can type
the answer into the text box next to the ”Execute” button then click the
execute button. The system will recognize the postcondition has been

3



satisfied, so it will place ”Good work!” in the hint window, and the new
puzzle in the what next and picture windows.

2. The user thinks s/he knows the answer, but gets it wrong. The hint
window will display ”Sorry, that did not help you any.” The state of the
world does not change beyond this

3. The user is presented with a puzzle s/he has no clue how to solve. S/he
can click on the ”Hint” button. A hint explaining that step will appear on
the screen, in the hint text box. S/he can continue doing this until hints
run out. If, at any point, the user thinks s/he now knows the solution
s/he can type it into the execute box. At this point, either case 1 or case
2 will occur

4. After ruling out all hints, the user still does not know how to solve the
problem. This will trigger the alternate decomposition where the system
solves the puzzle for the user. The system explains, on the hint screen,
what it has done for the user. After the system solves the puzzle, the state
of the world changes as if the user has solved the puzzle him/herself.

4.2 Building a game

A teacher can build a game through filling out the elements of the general form.
They can use our general form as an example. They would then need to run an
xslt engine on that and our xslt code. This will produce a xml document that
works with the CEA Task Engine.

5 Future Work

A few improvements never quite made it into our game. At the current moment,
the game is very static. Each room consists of a set number of puzzles. The user
goes through each room in order. In games, alternate methods exist to reach
the end goal. Several methods exist merely to interact with the world. Future
versions of this game should add this.

In addition, the task model provides preconditions, an easy way to only
run alternate decompositions if you have/want to. This would be great for an
intelligent tutor; we could keep track of how frequently a user runs out of hints
in a room, opening up extra questions if the user needs extra help in. Adapting
the game to users can be an interesting extension to the project.

References

[1] CEA-2018 Task Model Description Standard: Consumer Electronics Asso-
ciation (2007)

4


