
computer	20

COMPUTING PR ACTICES

Published by the IEEE Computer Society	 0018-9162/09/$26.00 © 2009 IEEE	

The recently approved ANSI/CEA-2018 standard is motivated by the
current usability crisis in computer-controlled electronic products. The
standard facilitates a new user interface design methodology that uses
a task model at runtime to guide users.

A
ccording to a recent study,1 half of all report-
edly malfunctioning consumer electronics (CE)
products returned to stores are in full work-
ing order—customers just couldn’t figure out
how to operate them. The trouble started in

the 1980s with the infamous blinking VCR clocks and has
gotten steadily worse as virtually everything we buy these
days has a computer chip controlling it.

The current usability crisis has at least two aspects: com-
plexity and inconsistency. First, computer control has made
it easy—perhaps too easy—to add features to products,
and their resulting complexity has exceeded the capacity
of current user interface (UI) designs for users to operate
them intuitively. Second, there is little or no UI consistency,
either between devices with similar functions or between
devices from the same manufacturer.

Standardization would appear to be a logical solution to
the inconsistency problem. Unfortunately, CE manufactur-
ers adamantly resist any attempt to standardize UIs across
devices with similar functions. They believe that their UIs’
appearance and operational details are crucial to brand
identification and product differentiation, and fear that
UI standardization is the first step toward commoditiza-
tion, which may be good for consumers but drives down
profit margins.

Standardization of UIs across devices from the same
manufacturer doesn’t meet with this resistance but is
much more limited in its potential advantages. For exam-

ple, a typical consumer only owns one model of radio and
thus wouldn’t benefit from consistency across all models
from a given manufacturer, and there is limited opportu-
nity for interface consistency between a radio and, say, a
microwave oven.

The recently approved ANSI/CEA-2018 standard2 aims
to directly address the complexity problem by facili-
tating a new kind of user interaction without trying to
standardize the appearance of the UI per se. This tricky,
but necessary, strategy could significantly improve the
usability of computer-controlled CE products and software
interfaces in general.

TASK-BASED USER INTERFACES
One way to deal with device complexity is to eliminate

as many features as possible. Apple has been notable for
doing this. However, some advanced features enabled by
computer control, such as increased customization and
programmability, are truly useful. But they’re also inher-
ently complicated, and few users read or can thoroughly
understand the relevant manuals or documentation—if
they can even find them!

This unavoidable complexity demands a shift in
product design methodology. In addition to performing
its primary function, such as playing a DVD or heat-
ing food, a computer-controlled CE device should also
actively help the user learn how to operate it via a task-
based UI.

Building Task-Based
User Interfaces with
ANSI/CEA-2018
Charles Rich, Worcester Polytechnic Institute

IEEE Computer, Vol. 42, No. 8, August 2009.

21AUGUST 2009

When should I do <task>? •	
Why did you do <task>? •	
What are the inputs/outputs of <task>? •	
Did <task> succeed? •	

The question of what to do next is at the heart of task
guidance. The signature experience of the usability crisis
is facing a bewildering array of buttons, sliders, and so on
and not knowing how to respond. In fact, a “What next?”
capability should be considered as indispensable to good
UI design as the “undo” capability currently is.4

A system implemented according to the architecture
in Figure 1 can provide the answers to these user ques-
tions. Figure 2 is a screenshot of DiamondHelp, a DVD
recorder application5 built according to this architecture

Architecture
Figure 1 shows the architecture of a task-based UI.
The architecture’s most important feature is that it uses

a task model description at runtime to guide the user. In
traditional UI design, formal task models are used only at
design time, if at all, and then discarded. (For an interest-
ing experiment in combining model-based design with
task-based user interfaces, see the BATS3 system.)

The next most important architectural feature is the
decomposition of the task-based UI into two components: a
generic task engine and an application-specific UI. (The task
model description is also, of course, application specific.) It is
this decomposition that has mitigated industry resistance to
ANSI/CEA-2018, because it standardizes only the task engine
and the task model description language, not the UI. Another
advantage is that the effort of building a task engine can be
amortized over many different applications.

The task engine’s basic functions are to load and
validate a task model description, and to maintain a rep-
resentation of the current status of the user’s tasks. The
task engine doesn’t interact directly with the user. If it
needs information from the user, it sends a request to the
UI. How this request is presented to the user depends on
the specific UI—for example, it may be graphical, textual,
spoken, and so on.

Communication between the task-based UI and the
controlled device(s), called grounding, is implemented
in ANSI/CEA-2018 using JavaScript. Because it has been
implemented on a wide range of platforms, JavaScript
provides maximum flexibility for grounding to different
networks and other infrastructure technologies.

The architecture also allows for the possibility that
the user will perform manual operations on the device,
such as loading a DVD. In fact, some devices may only be
manually operable—for example, because they’re not con-
nected to the network—in which case the UI would simply
provide instructions to the user indicating what to do.

Finally, the architecture is functional, not physical. For
example, the task-based UI may run as a computational
process on the same hardware as the device or have sepa-
rate hardware. The UI display, if any, may use the device
hardware—for example, if the device is a TV—or it may
use a shared remote display accessed through the network.
Similarly, the task model description may be uploaded
from the device, downloaded from the Internet, provided
on a USB stick that comes with the device, and so on.

Task guidance
One way to think about the guidance that a task-based

UI provides is in terms of the questions a user can ask the
system, such as

What can/should I do next? •	
How do I do <task>? •	

Device(s)

User
Manual operations

Task
engine

User
interface

Task-based user interface

Grounding

Task model
description

(ANSI/CEA-2018)

Figure 1. Functional architecture for a task-based user interface
and its relationship to device(s) and user. Unlike traditional
UIs, in which formal task models are used only at design time,
if at all, and then discarded, a task-based UI uses a task model
description at runtime to guide the user. ANSI/CEA-2018
standardizes only the task engine and the task model description
language, not the UI.

Figure 2. Screenshot of a task-based UI for a DVD player built
according to the architecture in Figure 1. The top half of the
screen is a generic “chat window” for guidance; the bottom half is
an application-specific direct-manipulation GUI.

computer	22

COMPUTING PR ACTICES

<taskModel about="urn:computer.org:cetask:library"
 xmlns="http://ce.org/cea-2018"

 <task id="Borrow">
 <input name="book" type="Book"/>

 <subtasks id="borrowing">
 <step name="go" task="GoToLibrary"/>
 <step name="choose" task="ChooseBook"/>
 <step name="check" task="CheckOut"/>
 <binding slot="$choose.input"
 value="$this.book"/>
 <binding slot="$check.book"
 value="$choose.output"/>
 </subtasks>
 </task>

 <task id="GoToLibrary"/>

 <task id="ChooseBook">
 <input name="input" type="Book"/>
 <output name="output" type="Book"/>

 <subtasks id="initial">
 <step name="lookup" task="LookupInCatalog"/>
 <step name="take" task="TakeFromShelf"/>
 <binding slot="$lookup.book"
 value="$this.input"/>
 <binding slot="$take.book"
 value="$this.input"/>
 <binding slot="$take.location"
 value="$lookup.location"/>
 <binding slot="$this.output"
 value="$this.input"/>
 </subtasks>

 <subtasks id="alternative">
 <step name="search" task="UseSearchEngine"/>
 <step name="take" task="TakeFromShelf"/>
 <applicable>
 $this.success == false
 </applicable>
 <binding slot="$take.book"
 value="$search.book"/>
 <binding slot="$take.location"
 value="$search.location"/>
 <binding slot="$this.output"
 value="$search.book"/>
 </subtasks>
 </task>

 <task id="LookupInCatalog">
 <input name="book" type="Book"/>
 <output name="location" type="string"/>
 <postcondition>
 $this.location != undefined
 </postcondition>
 <script>
 $this.location = lookup($this.book);
 </script>
 </task>

 <task id="TakeFromShelf">
 <input name="book" type="Book"/>
 <input name="location" type="string"/>
 </task>

 <task id="UseSearchEngine">
 <input name="query" type="string"/>
 <output name="book" type="Book"/>
 <output name="location" type="string"/>
 <postcondition>
 $this.book != undefined
 </postcondition>
 <script>
 $this.book = search($this.query);
 if ($this.book != undefined)
 $this.location = lookup($this.book);
 </script>
 </task>

 <task id="CheckOut">
 <input name="book" type="Book"/>
 <script>
 print("["+$this.book+" checked out!]");
 </script>
 </task>

 <script init="true">
 <!- insert JavaScript from Figure 5 ->
 </script>

</taskModel>

Figure 3. Complete ANSI/CEA-2018 task model description for borrowing a book from the library. This XML document defines seven
task classes. The top-level task, Borrow, is decomposed into subtasks GoToLibrary, ChooseBook, and CheckOut. ChooseBook is further
decomposed either into LookupInCatalog followed by TakeFromShelf or UseSearchEngine followed by TakeFromShelf. All the other task
classes are primitive.

using the Collagen task engine4 and its associated task
model description language, which preceded and inspired
ANSI/CEA-2018. The top half of the screen is a generic “chat
window” for guidance, while the bottom half is an appli-
cation-specific direct-manipulation GUI.

TASK MODELING
Task modeling—the process of developing a task model

description for a particular domain—is a well-known
technique in both UI design and artificial intelligence (AI).

A reasonable question then is why yet another task model
formalism is needed.

The first reason is that ANSI/CEA-2018 is a standard,
which makes it possible for devices from different man-
ufacturers to interoperate. In modern offices, factories,
laboratories, and homes, computer-controlled devices are,
to a rapidly increasing extent, connected via networks.
While standards, such as universal plug and play (UPnP;
www.upnp.org) for CE devices and the Laboratory 	Equip-
ment Control Interface Specification (www.lecis.org) for

23AUGUST 2009

laboratory instruments, already
exist for remote network con-
trol of individual devices, the
real payoff of networking lies in
supporting high-level integrated
services that involve multiple
steps on multiple devices, such as
gathering, analyzing, and storing
data in a laboratory or copying a
movie from videotape to DVD in
a home entertainment center.

From the user’s point of view,
each of these examples is con-
ceptually a single high-level
task. Unfortunately, especially
if the devices involved are from
different manufacturers, users
currently need to learn the dif-
ferent operational details of each
device to carry out the whole
task. A single standard span-
ning from high-level tasks down
to the device level is needed for
unified support of such multide-
vice tasks.

The second reason for ANSI/CEA-2018 is that it distills the
key features of task models in a way that enables practical
runtime use in CE and similar low-cost applications. In task
modeling, as in all formalisms, there is a tradeoff between
expressive power and computational tractability.

The graphical task analysis formalisms commonly used
in UI design, such as ConcurTaskTrees,6 and the hierarchi-
cal task network formalisms commonly used in AI, such
as SIPE,7 are more expressive than ANSI/CEA-2018. For
example, ANSI/CEA-2018 doesn’t explicitly represent paral-
lelism or include a rich model of time intervals.

However, these more expressive graphical and AI task
modeling formalisms are also more computationally
expensive to reason about automatically. This isn’t a prob-
lem for UI design tools, because the automatic reasoning
occurs only at design time. Similarly, this isn’t a problem
in AI, because the computing resources typically available
for AI applications are much greater than those currently
available in CE devices.

Finally, compared to a very broad model-based UI design
formalism such as the User Interface Extensible Markup
Language (www.usixml.org), which is intended to cover
everything from layout to dialog control and includes a
task-modeling component based on ConcurTaskTrees, ANSI/
CEA-2018 has a much narrower and more limited focus.

TASK MODEL DESCRIPTION
Figure 3 shows a complete, self-contained ANSI/CEA-

2018 task model description for a simple example task:

borrowing a book from the library. The first thing to
observe about ANSI/CEA-2018 is that it isn’t a graphical task
modeling formalism. The primary purpose of the standard
isn’t to help human designers visualize and formalize the
task structure of a new domain, but rather to specify the
syntax and semantics of an XML document that a device
will interpret at runtime to guide the user.

This isn’t to say that graphical visualization is unim-
portant—quite the opposite. Humans can’t use complex
formalisms without making diagrams. For example, Figure
4 contains helpful graphical presentations of the task
model description in Figure 3. However, these diagrams
aren’t a formal part of the standard; they’re just an infor-
mal aid to understanding. In the future, it may be useful
to develop a graphical tool for ANSI/CEA-2018 based on
similar diagrams.

The standard’s key expressive features include tasks,
input and output parameters, preconditions and postcon-
ditions, grounding, task decomposition, temporal order,
data flow, and applicability conditions.

Tasks
The concept of tasks, which might also be called activ-

ities, goals, jobs, or actions, is at the heart of the ANSI/
CEA-2018 standard. Task examples in the CE domain
include copying a videotape to a DVD, watching a recorded
TV episode, and turning off the room lights.

Task characteristics. Tasks vary widely in their time
extent: Some occur over minutes or hours—for example,
watching a recorded TV episode; some are effectively

LookupInCatalog TakeFromShelf UseSearchEngine TakeFromShelf

lookup take

initial alternative

go check
choose

search take

GoToLibrary ChooseBook

Borrow

Checkout

ChooseBook
(initial)

location

output

book

book

input

LookupInCatalog

GoToLibrary

TakeFromShelf

Checkout

book

book

location

Borrow

(a)

(b)

Figure 4. Informal graphical presentations of the task model structure in Figure 3. (a) Task
decomposition tree, with dotted lines indicating decomposition choices. (b) Data flow
between task inputs and outputs follows selection of initial decomposition.

computer	24

COMPUTING PR ACTICES

instantaneous—for example, turning off the room lights;
and some have an unbounded time extent—for example,
a weekly teleconference.

Tasks typically involve both human participants—as
requesters, beneficiaries, or performers of the task—and
electronic devices. Some tasks, such as providing a finger-
print for identification, can be performed only by a human
being; others, such as displaying a video, can be performed
only by an electronic device; and yet others, such as open-
ing a DVD drawer, can be performed by either depending
on the circumstances.

Tasks also vary along an abstraction spectrum from
high-level—closer to the user’s intent and natural way of
communicating—to low-level—closer to the primitive con-
trols of a particular device. Watching a recorded TV episode
is a fairly high-level task, while pressing the power button
on a DVD player is a very low-level task. Tasks are also
more or less abstract by virtue of being parameterized.

Deciding on the appropriate task granularity and
parameterization is a key part of the modeling process
and depends on both the application and the desired
level of task guidance. Further, whereas some other
formalisms use different representations for high-level
tasks (goals) versus low-level tasks (actions), ANSI/CEA-
2018 uses a single uniform task representation at all
levels of abstraction, which provides more flexibility to
adjust the level of granularity in developing models.

Task classes and instances. A task model defines task
classes. A task instance corresponds to an actual or hypo-
thetical occurrence of a task. Pressing the power button
on a DVD player is an example of a task class. Parameters
of this class might include who pressed the button, which
DVD player was involved, and when the action occurred.
Thus, David Smith pressing the power button on the DVD

player in his living room at 3:15 pm on 1 January 2006 is
an instance of this class. A task engine manipulates both
classes and instances.

The task model description in Figure 3 defines seven
task classes, from the high-level task, Borrow (borrowing
a book from the library), to low-level tasks, such as Take-
FromShelf (taking a book from a shelf). Obviously, what is
high- and low-level is relative to the overall model’s level of
detail, and is an important task-modeling decision.

Input and output parameters
The input parameters of a task class should include all

data that affects the execution of task instances, while the
output parameters should include all data that is modi-
fied or created during execution of task instances. For
example, the LookupInCatalog task takes a book as input
and returns a location string as output. Input and output
parameter types may include new application-specific data
types defined in JavaScript, such as Book.

Pre- and postconditions
A task’s precondition is a partial Boolean function that

tests whether it’s appropriate to perform the task at the
moment. A task’s postcondition is a partial Boolean function
that tests whether a just-executed task was successful. Both
preconditions and postconditions default to unknown.

Pre- and postconditions are defined using JavaScript
expressions. The environment in which these expressions
are evaluated includes all the functions and variables
defined in the task model initialization script, like that
shown in Figure 5, plus a special binding of the vari-
able $this to the current task instance. For example, the
postcondition of LookupInCatalog specifies that the task
succeeds if and only if the location output is defined.

function Book (author, title) {
 this.author = author;
 this.title = title;
}

Book.prototype.toString =
 function () { return this.title; }

var stranger = new Book("Heinlein",
 "Stranger in a Strange Land"),
 fire = newBook("Vinge",
 "A Fire Upon the Deep"),
 mindscan = newBook("Sawyer","Mindscan");

var catalog = [
 { book: stranger, location: "Shelf1" },
 { book: mindscan, location: "Shelf2" },
 { book: fire, location: "Shelf3" }];

var database = [
 { query: "Heinlein", book: stranger },
 { query: "Sawyer", book: mindscan },
 { query: "Vinge", book: fire }];

function lookup (book) {
 for (i = 0; i < 3; i++)
 if (catalog[i].book.author == book.author
 && catalog[i].book.title == book.title)
 return catalog[i].location;
}

function search (query) {
 for (i = 0; i < 3; i++)
 if (database[i].query == query)
 return database[i].book;
}

Figure 5. Initialization JavaScript to be inserted into the task model description of Figure 3. This code defines the Book data type and
associated functions used in the task model’s conditions and grounding scripts. First, a constructor and printing function for Book are
defined. Next, three global variables are initialized to implement a tiny card catalog and searchable database for testing purposes.
Finally, lookup and search functions are provided for the catalog and the database, respectively.

25AUGUST 2009

Grounding
Primitive task types—those without decompositions—

may be associated with a grounding script, which is a
JavaScript program evaluated in the same environment
as conditions. These programs typically connect to an
underlying device, cause it to perform the appropriate
action, and then report the results by setting the output
slots of the current task instance. For example, the ground-
ing script for LookupInCatalog sets the location output to
the result of calling the lookup function. (In this simple
example, there is no real device; all of the state is stored
in the JavaScript environment itself.)

Task decomposition
Task models are hierarchical. Accomplishing high-level

tasks usually requires repeatedly decomposing them into
increasingly lower-level tasks, or subtasks. This decompo-
sition can sometimes be achieved entirely automatically,
while at other times a collaboration between the system
and user is required.

For example, the high-level Borrow task is decom-
posed into three subtasks: GoToLibrary, ChooseBook,
and Checkout. By default, the temporal order between
these steps is linear (totally ordered), but ANSI/CEA-2018
also supports the specification of partial orders. The
binding elements in the subtasks definition specify the
data flow between these steps, which is shown graphi-
cally in Figure 4b.

Finally, every decomposition may optionally include
an applicability condition, which can help the system
choose the appropriate decomposition when there is
more than one. For example, the applicability condition
for the second decomposition of ChooseBook guaran-
tees it will only be chosen when the first decomposition
fails. Like pre- and postconditions, applicability con-
ditions are defined using Boolean-valued JavaScript
expressions.

REFERENCE IMPLEMENTATION
A reference implementation of ANSI/CEA-2018 under a

Berkeley Software Distribution (BSD) open source license
is available by contacting the author. It’s written in Java
and includes both a task engine and a generic UI—a simple
command shell that is useful for exploring and debug-
ging task models. In a realistic application, an appropriate
graphical, speech, gesture, or other interface would replace
this command shell.

Students at Worcester Polytechnic Institute used this
reference implementation to build 10 task-based UIs as
graduate projects in spring 2008 (www.cs.wpi.edu/~rich/
courses/cs525u-s08/projects) and will use it again in 2009.
These projects, such as the example in Figure 6, demon-
strate that the application of task-based UIs isn’t limited
to CE.

Northeastern University’s Relational Agents Group
is also using the reference implementation to guide
task-based dialogs (www.ccs.neu.edu/research/rag/
research/r_ontology.html), and the Intuitive Interac-
tion for Everyone with Home Appliances Based on
Industry Standards project (www.i2home.org) is using
it to investigate how to build task-based UIs for UPnP
devices.8

To demonstrate the reference implementation, a
complete annotated transcript of a session using the
command shell interface follows. User input appears
after the CE prompt.

 Welcome to CE Task Engine!
CE> load models/Library.xml

First, the user loads the XML document shown in
Figure 3.

CE> task Borrow
 Let’s start to borrow a book.

Next, the user creates a new top-level instance of the
Borrow task. The system responds by saying “Let’s start
to” followed by the formatted printing of the current top-
level instance (see Figure 7). All of the following system
responses similarly use formatted printing.

Figure 6. Screenshot of example student-built task-based
UI using the ANSI/CEA-2018 reference implementation. The
application is an aircraft flight plan assistant.

Borrow@format = borrow %s
GoToLibrary@format = go to the library
ChooseBook@format = choose %s
ChooseBook.input@definite = the book you want
LookupInCatalog@format = look %s up in the catalog
TakeFromShelf@format = take %s from %s
UseSearchEngine@format = use the search engine
CheckOut@format = check out %s

Figure 7. Optional property file used by reference
implementation for formatted printing, with inputs and outputs
substituted for each %s by the Java String.format() method.

computer	26

COMPUTING PR ACTICES

CE> next
 Please go to the library.

The user asks the system what to do next, and the
system answers based on the task model and current
execution state.

CE> done
 Ok.

Going to the library is a good example of a task that only
the user can perform. The user informs the system that
this task has been done.

CE> status

 Borrow by borrowing [live] [<-focus]
 GoToLibrary [done]
 ChooseBook [live]
 CheckOut

Here we see a printout of the current task tree in human-
readable form. Note that the task engine keeps track of
which tasks have been done, which are live (ready to be
done), and which, like CheckOut, haven’t been done but
aren’t yet live due to temporal or other constraints. The
reference implementation also includes a rudimentary
dialog focus mechanism.

CE> next
 What is the book you want?

The next step, ChooseBook, can’t be performed
because it has an unbound input parameter (the book).
The system therefore queries the user for a value. Note
that the system doesn’t ask for a value until it’s actually
needed.

CE> task / new Book("Sawyer","Mindscan")
 Ok.

In this generic development/debugging interface, the
user provides the input value by evaluating a JavaScript
expression.

CE> next
 Shall I look Mindscan up in the
 catalog?

Looking up a book in the card catalog is a task that
either the user or the system could perform, so the system
asks for permission.

CE> yes

 Ok.
 Done look Mindscan up in the catalog.

CE> next
 Please take Mindscan from Shelf 2.

The system found in the catalog that the desired book is
on shelf 2 and asks the user to take it from the shelf.

CE> done
 Ok.
 Shall I check out Mindscan?

Once informed that the user has taken the book from

the shelf, the system immediately offers to perform the
electronic checkout, since this is the only subtask remain-
ing and only the system can perform it.

CE> yes
 Ok.
 Done check out Mindscan.
 Completed borrow Mindscan.

This completes the top-level task. The current reference
implementation doesn’t include commands to ask when,
how, or why questions, but the information to answer
them does exist in its data structures (and several of the
student project UIs provide this information to the user).

FUTURE WORK
Much work remains to be done before ANSI/CEA-2018

and task-based UIs are likely to have a noticeable impact
on the usability crisis.

In the standards arena, the next hurdle is to develop
standard libraries of task models for a variety of domains—
what are sometimes called profiles. ANSI/CEA-2018 is only
a language for writing task models in general. To fully
support multimanufacturer, multidevice networked config-
urations, we need standard libraries that define high-level
tasks and alternative decompositions depending on the
types of devices available. Some standard profiles already
exist for low-level tasks in the CE domain in the form of the
UPnP device control protocols defined by the Digital Living
Network Alliance (www.dlna.org). However, UPnP isn’t an

Multidevice networked
configurations require standard
libraries that define high-level tasks
and alternative decompositions
depending on the types of devices
available.

27AUGUST 2009

References
	 1.	 E. Den Ouden, “Development of a Design Analysis

Model for Consumer Complaints: Revealing a New
Class of Quality Failures,” PhD dissertation, Eind-
hoven Univ. of Technology, The Netherlands, 2006.

	 2.	 Consumer Electronics Assoc., Task Model Description
(CE Task 1.0), ANSI/CEA-2018, Mar. 2008; http://ce.org/
cea-2018.

	 3.	 J. Eisenstein and C. Rich, “Agents and GUIs from Task
Models,” Proc. 7th Int’l Conf. Intelligent User Interfaces
(IUI 02), ACM Press, 2002, pp. 47-54.

	 4.	 C. Rich, C.L. Sidner, and N. Lesh, “Collagen: Applying
Collaborative Discourse Theory to Human-Computer
Interaction,” special issue on intelligent user inter-
faces, AI Magazine, vol. 22, no. 4, 2001, pp. 15-25.

	 5.	 C. Rich and C.L. Sidner, “DiamondHelp: A Generic
Collaborative Task Guidance System,” special issue
on mixed-initiative assistants, AI Magazine, vol. 28,
no. 2, 2007, pp. 33-46.

	 6.	 F. Paterno, “ConcurTaskTrees: An Engineering Nota-
tion for Task Models,” The Handbook of Task Analysis
for Human-Computer Interaction, D. Diaper and N.
Stanton, eds., Lawrence Erlbaum Assoc., 2004, pp.
483-500.

	 7.	 D.E. Wilkins, “Using the SIPE-2 Planning System: A
Manual for Version 6.0,” tech. report, SRI Int’l Artifi-
cial Intelligence Center, Menlo Park, Calif., 1999.

	 8.	 G. Zimmermann, “Open User Interface Standards—
Towards Coherent, Task-Oriented and Scalable User
Interfaces in Home Environments,” Proc. 3rd IET Int’l
Conf. Intelligent Environments (IE 07), IEEE Press,
2007, pp. 36-38.

	 9.	 D. McAllester, “Truth Maintenance,” Proc. 8th Nat’l
Conf. Artificial Intelligence (AAAI 90), AAAI/MIT Press,
1990, pp. 1109-1116.

	10.	 N. Lesh, C. Rich, and C.L. Sidner, “Using Plan Rec-
ognition in Human-Computer Collaboration,” Proc.
7th Int’l Conf. User Modeling (UM 99), Springer-Verlag,
1999, pp. 23-32.

Charles Rich is a professor of computer science at Worces-
ter Polytechnic Institute. While at Mitsubishi Electric
Research Laboratories, he cochaired the CEA working
group that developed ANSI/CEA-2018. His research inter-
ests include artificial intelligence, human-robot interaction,
intelligent user interfaces, and interactive media and game
development. Rich received a PhD in artificial intelligence
from the Massachusetts Institute of Technology. He is a
senior member of the IEEE, a member of the ACM, and a
fellow of the Association for the Advancement of Artificial
Intelligence. Contact him at rich@wpi.edu.

adequate general formalism for task-based UIs because it
has no task decomposition hierarchy—it can only define
one level of task.

As researchers begin to develop libraries for numerous
devices and manufacturers, many scaling challenges will
undoubtedly emerge and must be addressed, such as how
to index and retrieve appropriate models, how to factor
models to best capture similarities, and so on.

On the tools side, the reference implementation is only
a start. Hopefully, through the open source process, it
will become both more efficient and more powerful. For
example, the task engine would benefit greatly from the
addition of a truth-maintenance system9 such as the one
Collagen used. Collagen also included a plan recognition
component10—given an observed sequence of primitive
actions and a task model, it could infer which high-
level task (goal) was being performed, including which
decomposition choices, if any, had been made. The ANSI/
CEA-2018 formalism would support a similar algorithm.

As anyone who has tried it can tell you, developing
task models is at least as hard as writing a well-structured
object-oriented program. Visualization, debugging, and
other tools specifically designed or adapted for ANSI/CEA-
2018 task models would therefore be a great help.

Finally, there is a lot of room for creativity and experi-
mentation in designing the interface part of task-based
UIs—that is, what the user actually sees and hears. In
particular, the availability of the task model at runtime
provides a good semantic underpinning for developing
natural-language and speech interfaces.

I encourage readers to experiment with the ANSI/CEA-
2018 standard and the task-based UI methodology to
develop more effective CE applications in particular
and software interfaces generally. Meanwhile, the

technical and market forces driving this work continue to
intensify. Home networking, though still a niche market,
will inevitably become commonplace. This means that
manufacturers will eventually be forced to make all their
products remotely operable, which in turn will make
it possible for third parties to use the new standard to
develop more usable high-level interfaces. Further, with
Moore’s law showing no signs of slowing down, future
products will be able to support ever-more features.

Acknowledgments
I thank Gottfried Zimmermann of Access Technologies

Group (editor), Alan Messer of Samsung Research (cochair),
Leslie King (CEA coordinator), Mark Thomson and Harry Bliss
of Motorola Research, and the other members of R7 WG12
for their collaboration in developing ANSI/CEA-2018. I also
thank Vas Kostakos, Harry Bliss, Tim Bickmore, and Gottfried
Zimmermann for their comments after reading earlier drafts
of this article.

For more information on this and other computing topics,
please visit our Digital Library at http://computer.org/
csdl.

