
Operating in a Hierarchy of Time Scales
for an Always-On Relational Agent

Charles Rich, Candace L. Sidner, Bahador Nooraei, and William Coon

Worcester Polytechnic Institute
Worcester, MA, USA

{rich,sidner}@wpi.edu

Abstract. Motivated by the challenge of designing a real-time conver-
sational agent that is always on and builds long-term relationships, we
have developed a software architecture that operates with control loops
at three distinct time scales, from weeks down to milliseconds. We discuss
the novel aspects of this architecture and how it is applied in a relational
agent for isolated older adults.

1 Introduction

One of the long-held dreams of artificial intelligence is to create an agent (whether
robotic, animated or only a disembodied voice) that functions as a permanent
member of a human household. Because humans are deeply and fundamentally
social beings, they cannot help but expect such a continuously present artifi-
cial agent, especially if humanoid, to become part of their network of personal
relationships.

Previous work [2] has placed intelligent virtual agents in peoples homes for
months at a time, but these agents were not “always on,” i.e., it was up to the
person to log in once a day to interact with the agent. There have also been
long-term always-on agents in public settings, such as Roboceptionist [6], that
did not, however, build a continuing relationship with any single person.

Fig. 1. Always-on agent concept and prototype.

Workshop on Real-Time Conversations with Virtual Agents,
Santa Cruz, CA, Sept. 2012

2 Hierarchy of Times Scales in an Always-On Agent

The goal of this research is to develop and implement a computational model
for building long-term relationships between humans and virtual agents, along
with the interaction affordances to support this process. As theoretical starting
points, we look to Grosz and Sidner’s [7] collaborative discourse model and
Bickmore’s [1] relationship model. Our initial application focus is to provide
companionship and social support and to promote wellness for older adults who
are living alone.

The left side of Fig. 1 illustrates the basic concept of how the virtual agent
will “live” in a person’s home. Notice that because the agent is always on and
has sensing abilities (using microphone, camera and passive IR motion detector),
it can initiate interactions.

The right side of Fig. 1 is a screen shot from our current prototype in which
the agent is playing a social game of cards with the person. The cartoon-like ani-
mated face is one of Bickmore’s animation clients.1 We are using a text-to-speech
engine for the agent’s utterances and touch menus for the user’s contributions
to the conversation (since speech recognition is problematic with our older pop-
ulation). The area of the screen where the card game appears will change for
different activities; for example, a week-at-glance calendar will appear to support
conversations about scheduling.

A typical interaction, lasting perhaps 20 minutes, might start when the
agent notices the person walking by at a distance and calls out a greeting,
such as “Good morning!”. The person approaches the computer and a con-
versation about the weather ensues, which then develops into a social game of
cards (Rummy). During the card game, the agent brings up the somewhat sen-
sitive topic of the person diet. The conversation ends when the agent reminds
the person that she needs to leave for a trip to the aquarium. Later in the day,
they finish the card game together and the agent arranges a Skype call with the
person’s sister (hiding all the details of the actual Skype web interface).2

This paper focuses on one novel aspect of this project relevant to the Work-
shop on Real-Time Conversations with Virtual Agents, namely the fact that a
scenario such as the one above requires the agent to act and reason in a hierarchy
of times scales ranging from milliseconds to minutes to days and weeks. After
describing some of the technical mechanisms we have developed to address this
challenge, we will in Section 4 return to this scenario in more detail.

2 Time Scales

The typical interaction above illustrates the range of behaviors at different time
scales that an always-on relational agent must support. We have found it useful
to group these behaviors into the three-level hierarchy shown in Fig. 2:

1. Relationship planning takes place over hours, days and weeks and determines
which activities are appropriate for the time of day and stage of the long-
term relationship. For example, with a stranger, the agent only talks about

1 See http://relationalagents.com
2 Also see http://tinyurl.com/AlwaysOnVideo for a concept video.

Hierarchy of Time Scales in an Always-On Agent 3

Rela%onship,
Planning,

hr#/#day#/#week#
Our$rela(onship$is$close$enough$
todayformetobringupthe$issue$
of$diet.$

Resource,
Arbitra%on,sec#/#min#/#hr#

Thereisnot$enough$(me$before$the$
3pm$trip$to$start$the$topic$of$diet.$

Event,
Synchroniza%on,msec#/#sec#

Turnmyhead$toward$the$card$
game$when$Isay“this$card”.$

Time$Scale$ Processing$ Example$

Fig. 2. A hierarchy of time scales.

the weather and sports, but with a companion talking about diet and exer-
cise is a possibility.

2. Resource arbitration happens in “soft” real time, i.e., on the scale of sec-
onds to minutes to hours. The most visible resource that the agent needs
to arbitrate is the current focus of attention in the conversation. The de-
cision of when to switch the focus between activities depends on time and
other factors, such as the relative importance of the activities. The temporal
reasoning includes the expected duration of the activities (e.g., interrupting
a card game for a brief reminder) and the urgency of the activities (e.g.,
switching to a Skype call when the other party is already connected is very
urgent, whereas talking about diet can be be done anytime today).

3. Event synchronization is “hard” (sub-second) real time. For example, if the
coordination of speech and gesture is even a fraction of a second off, it is
perceived as unnatural.

3 Functional Architecture

Fig. 3 shows the functional architecture we have implemented to support oper-
ating at the three time scales described above and that we are using to develop
our always-on relational agent application for isolated older adults. The relation-
ship manager [5] operates at the relationship planning scale and the real-time
collaboration manager [11] operates at the hard and soft real-time scales. It is

4 Hierarchy of Times Scales in an Always-On Agent

Rela%onship,
Manager,

!rela%onship,planning,
,

Real;Time,
Collabora%on,
Manager,

,
,
,

!resource,arbitra%on,
!event,synchroniza%on,

,

Disco,

ac(vityClevel$plan$for$session$

resultsofsession$

Content,Plugins,

suggested$
ac(vi(es$

interac(ons$

Seman%c,Network,

Calendar,

Shared,Resources,(Persistent),

User,

Fig. 3. Functional architecture of always-on agent.

useful to think of this architecture in terms of three nested “loops” or threads
of control corresponding to the three time scales.

3.1 Relationship Planning

The outermost loop in the architecture is between the relationship manager
and the collaboration manager and is represented by the two arrows at the top
of Fig. 3. The communication between these two modules is in terms of high-
level activities, such as discussing the weather, playing cards, having a Skype
call, etc. Before each interaction session, the relationship manager produces a
high-level plan for the session based on meta-information about each activity
provided by the content plugins (see below). This plan consists of a partially
ordered set of activities with conditionals (to allow the user to make choices)
and other constraints. For example, the plan for the typical interaction discussed
earlier would have had a weather chat, followed by either card-playing3 or a
baseball chat (the user chose cards), followed by a Skype call, followed by a
story-recording activity (which was never reached). At the end of a session, the
collaboration manager reports back to the relationship manager about which
activities were started, which were successfully completed, how long was spent
on each activity, etc. The relationship manager uses this information to plan the
next session.
3 Card playing is an example of a “container” activity, discussed further below.

Hierarchy of Time Scales in an Always-On Agent 5

The two innermost loops of control, for resource arbitration and event syn-
chronization, operate within the collaboration manager. These two loops to-
gether manage all of the agent’s real-time interaction with the user, including
menus, speech and gestures.

3.2 Resource Arbitration

The resource arbitration loop is responsible for starting, stopping and switch-
ing between activities, based on the activity-level plan for the session, external
conditions and a set of heuristic rules.4 The arbitration loop uses Disco [13], the
open-source successor to Collagen [12], to represent the discourse state, which
includes the current activity-level plan tree and the focus of attention stack. The
resource arbitration loop is implemented as a schema-based system, inspired by
reactive architectures, such as [3].

A novel aspect of our heuristic rules for activity switching is the concept of
a container activity. A container activity is an activity, such as playing cards,
eating a meal or golf, that naturally co-extends in time with a conversation
about something else. For example, when you play cards, it is very natural
to intermingle your social comments about the card game with chatting about
another topic, such as baseball or weather. However, it is not natural to similarly
intermingle a conversation about baseball with a conversation about weather.

3.3 Event Synchronization

The innermost control loop of the collaboration manager concerns the moment to
moment changes needed in the agent’s presentation and behavior to coordinate
between modalities (e.g., speech and gesture) and to respond to external events.

The coordination between modalities is similar in spirit to the Behavior
Markup Language [15], except that we use Holroyd’s event-driven approach [9],
because we also intend to apply our architecture to robotic applications. For ex-
ample, we have the ability to synchronize the turning of the agent’s head toward
the card game display to coincide with uttering the phrase “this card.”

An example of a hard real-time response to an external event implemented
in this control loop is barge-in. In our menu-driven system, barge-in is when the
user touches a menu item while the agent is still speaking. When this happens,
the agent’s audio output needs to be stopped within a fraction of a second.

For more details of the internal architecture of the collaboration manager,
see [11].

3.4 Content Plugins

Returning to Fig. 3, notice that the content plugins sit between the relationship
manager and the collaboration manager and are accessed by both. The goal of
4 This part of the architecture also arbitrates contention for resources other than the

conversational focus, such as parts of the agent’s body; but this is beyond the scope
of this paper.

6 Hierarchy of Times Scales in an Always-On Agent

this aspect of the architecture is to provide authoring modularity. An applica-
tion like our agent for isolated older adults will need to support a large number
of different activities, and it should be easy for multiple developers to add new
activities as the project evolves. Plugins currently under consideration or de-
velopment include: agent’s self-introduction (overview of its currently available
activities), diet and exercise counseling, arranging and managing calls via Skype,
daily update chat, weather chat, sports chat (baseball and basketball), calendar
scheduling and reminding, social card playing, meditation, story recording, and
humorous anecdotes.

For the purpose of planning a session, all the relationship manager needs
to know is which high-level activities each plugin implements (one plugin can
implement one or more related activities) and some meta-information about
each activity including: which relationship stage it is appropriate for, how long
it typically takes, and how much it increases the closeness between the agent
and person when it is successfully completed.

Once an activity is started by the collaboration manager, the content of all
the agent utterances and the user menu items is obtained from the plugins via
an abstract API. All of the dialogue logic for a particular activity is thus en-
capsulated within the plugin. Plugins can be implemented using any technology.
Some of our plugins are implemented using Disco for Games [8, 13]; others are
coded in Java as simple state machines. Activities can also request the applica-
tion screen area (i.e., where the card game appears in Fig. 1), which is a resource
managed by the arbitration loop. Once an activity obtains control of this screen
area, it can manage both touch input and graphics output in this area as needed
for that activity.

Finally in Fig. 3, we have implemented a database consisting of a semantic
network of people, places and events, and a calendar that are resources to all of
the content plugins, as well as the relationship manager, for persistent storage of
relevant information. Our implementation uses the OWL ontology system [10],
because it is convenient for automatically making simple inferences using this
information, such as the fact that the day and month of a person’s birth is a
recurring yearly birthday event.

4 Scenario Revisited

We now revisit the scenario introduced in Section 1 to point out in more de-
tail examples of where each of the different time scales in the architecture are
operating:

– The agent sees the person walking by and attempts to initiate an interaction
with a greeting. [arbitration initiates new goal]

– The agent and person chit-chat a while about the local weather and also
about some unusual weather in another city where the person’s sister lives.
[synchronization to support user barge-in during menu interaction]

– The agent suggests and the person agrees to playing a social game of cards
(Rummy). [arbitration initiates new goal]

Hierarchy of Time Scales in an Always-On Agent 7

– During the card game, the agent looks toward the card display when it says
“this card.” [synchronization]

– After playing cards for ten minutes, the agent broaches the topic of improving
the person’s diet. [planning has added diet discussion to the list of allowable
goals for this interaction; arbitration initiates this goal after an adequate
amount of social “warm up” interaction has transpired]

– The agent notices and reminds the person that it is time for a previously
scheduled Skype call with the person’s brother. [arbitration initiates a new
goal based on calendar and clock time]

– The agent pauses the card game and brings up the Skype video screen con-
necting the person to her brother (hiding all details of the actual Skype web
interface).

– When the Skype call is done, the person abruptly leaves without saying
anything to the agent.

– After a few minutes have passed, the agent concludes that the person in-
tended to end the interaction. [arbitration]

– The agent updates its persistent model of the activities that occurred during
the session and based on its rules, concludes that the long-term relationship
has advanced from acquaintance to companion. [planning]

5 Conclusions and Future Directions

We have designed and implemented an architecture for real-time conversational
agents that operates at three distinct time scales, from weeks down to millsec-
onds, for relationship planning, resource arbitration and event synchronization.
While many other conversational agent architectures, such as [4] and [14], oper-
ate at two time scales, corresponding roughly to our soft and a hard real-time
loops, we do not know of any architecture that includes an explicit relationship
planning cycle like ours. Furthermore, the temporal reasoning in our (resource
arbitration) soft real-time loop is more sophisticated than these other systems.

We plan to evaluate the performance of our architecture in the field this
coming year by placing always-on agents that will run autonomously for 4 to 6
weeks in the homes of a dozen or more isolated older adults.

Looking further into the future, we have designed our architecture to also
be suitable for human-robot interaction. We plan to field test a robotic version
of our always-on agent, using a yet-to-chosen desktop robot with an expressive
face.

Acknowledgements. The always-on relational agent for isolated older adults is a
joint project between WPI and Northeastern University. We therefore wish to acknowl-
edge the contributions of Prof. Tim Bickmore, the principal investigator at Northeast-
ern, and his students and staff, including Lazlo Ring, Laura Vardoulakis, Dr. Barbara
Barry, John Connor Westfall, Kenneth Manning, Ramesh Manuvinakurike, Bridgette
Collado and Ashley Kline. We also wish to thank JJ Liu and Mitch Wills for their
contributions at WPI.

8 Hierarchy of Times Scales in an Always-On Agent

This material is based upon work supported by the National Science Foundation

under Grant No. IIS-0811942 and IIS-1012083. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

References

1. Bickmore, T.: Relational Agents: Effecting Change through Human-Computer
Relationships. PhD thesis, MIT Media Laboratory (2003)

2. Bickmore, T., Schulman, D., Yin, L.: Maintaining engagement in long-term in-
terventions with relational agents. Int. J. of Applied Artificial Intelligence 24(6)
(2010) 648–666

3. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. of Robotics
and Automation 2 (1986) 14–23

4. Cavazza, M., de la Camara, R.S., Turunen, M.: How was your day?: A companion
eca. In: Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1-Volume 1. (2010) 1629–1630

5. Coon, W.: A computational model for building relationships between humans and
virtual agents. Master’s thesis, Worcester Polytechnic Institute (August 2012)

6. Gockley, R., Bruce, A., Forlizzi, J., Michalowski, M., Mundell, A., Rosental, S.,
Sellner, B., Simmons, R., Snipes, K., Schultz, A., Wang, J.: Designing robots for
long-term social interaction. In: Proc. IEEE Int. Conf. on Intelligent Robots and
Systems, Edmonton, Canada (2005)

7. Grosz, B.J., Sidner, C.L.: Attention, intentions, and the structure of discourse.
Computational Linguistics 12(3) (1986) 175–204

8. Hanson, P., Rich, C.: A non-modal approach to integrating dialogue and action.
In: Proc. 6th AAAI Artificial Intelligence and Interactive Digital Entertainment
Conf., Palo Alto, CA (October 2010)

9. Holroyd, A., Rich, C.: Using the behavior markup language for human-robot in-
teraction. In: Proc. ACM Conf. on Human-Robot Interaction, Boston, MA (March
2012)

10. McGuinness, D., Van Harmelen, F., et al.: Owl web ontology language overview.
Technical report, W3C Recommendation (2004)

11. Nooraei, B.: A real-time architecture for conversational agents. Master’s thesis,
Worcester Polytechnic Institute (August 2012)

12. Rich, C., Sidner, C., Lesh, N.: Collagen: Applying collaborative discourse theory
to human-computer interaction. AI Magazine 22(4) (2001) 15–25 Special Issue on
Intelligent User Interfaces.

13. Rich, C., Sidner, C.L.: Using collaborative discourse theory to partially automate
dialogue tree authoring. In: Proc. Int. Conf. on Intelligent Virtual Agents, Santa
Cruz, CA (September 2012)

14. Swartout, W., Gratch, J., Hill Jr, R., Hovy, E., Marsella, S., Rickel, J., Traum, D.,
et al.: Toward virtual humans. AI Magazine 27(2) (2006)

15. Vilhjalmsson, H., et al.: The behavior markup language: Recent developments
and challenges. In: Intelligent Virtual Agents 2007, Lecture Notes in Artificial
Intelligence. Volume 4722. Springer-Verlag, Berlin (2007) 99–111

