
Using Collaborative Discourse Theory

to Partially Automate Dialogue Tree Authoring

Charles Rich and Candace L. Sidner

Worcester Polytechnic Institute
Worcester, MA, USA

{rich,sidner}@wpi.edu

Abstract. We have developed a novel methodology combining hierarchi-
cal task networks with traditional dialogue trees that both partially auto-
mates dialogue authoring and improves the degree of dialogue structure
reuse. The key to this methodology is a lightweight utterance semantics
derived from collaborative discourse theory, making it a step towards dia-
logue generation based on cognitive models rather thanmanual authoring.
We have implemented an open-source tool, called Disco for Games (D4g),
to support the methodology and present a fully worked example of using
this tool to generate a dialogue about baseball.

Keywords: cognitive models for behavior generation, conversational
and story-telling agents.

1 Introduction

Although the ultimate goal of most intelligent virtual agents research is to gen-
erate dialogue interaction from a rich underlying cognitive model, many current
agents, for example in video games, are still developed using traditional dialogue
tree authoring technology. Dialogue trees, however, have have many problems.
We have developed a novel methodology that mitigates some of these prob-
lems by combining dialogue trees with hierarchical task networks. The benefits
of our methodology include easier development and maintenance of large dia-
logues, greater reuse of dialogue authoring investment, and partial automation
of dialogue generation. Most importantly, because our methodology is based on
collaborative discourse theory, it is a step along the road toward more cognitively
based dialogue interaction. The methodology is implemented in an open-source
tool obtainable from the authors.

To quickly ground our discussion, Fig. 1 shows an example of the kind of
dialogue interaction we are concerned with. This dialogue involving baseball
games and news is taken from our current research project building a relational
agent for isolated older adults.1 Other dialogue interactions in the project involve

1 See http://www.cs.wpi.edu/~rich/always.

Y. Nakano et al. (Eds.): IVA 2012, LNAI 7502, pp. 327–340, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

328 C. Rich and C.L. Sidner

1 Which team are you rooting for?
2 • Yankees.
3 • Red Sox. ⇐
4 Really? But they aren’t so great at winning the World Series!
5 • I bet you are a Yankees fan. ⇐
6 • Ah, but who cares? They play great ball!
7 No, I’m just joking with you.
8 • Oh. ⇐
9 • That’s too bad, it would be more fun if you were!
10 Did you catch Thursday’s game?
11 • Yes. ⇐
12 • No.
13 • I don’t want to talk about baseball anymore.
14 What did you think of it?
15 • Awesome game! ⇐
16 • It was boring.
17 • We really needed that win.
18 Yeah, it was very intense. Great game.
19 • Yeah. ⇐
20 I wonder how the Red Sox are doing in the standings. Should I check?
21 • Yes.
22 • No. ⇐
23 • I don’t want to talk about baseball anymore.
24 Do you want to hear some recent baseball news?
25 • Yes. ⇐
26 • No.
27 Ok, I have several interesting stories here. The first one is about injuries. Would
28 you like to hear it?
29 • Yes. ⇐
30 • No.

. . .
31 Got time for another story?
32 • Yes.
33 • No. ⇐
34 Well, that’s about all. I sure like talking about baseball with you!
35 • Me, too. ⇐
36 • Let’s talk again tomorrow.

Fig. 1. Example menu-based interaction (⇐ is user selection). Italic lines are automat-
ically generated in the form shown in Fig. 2, with color added by the rules in Fig. 10.

1 What is the Baseball favoriteTeam?
10 Shall we achieve LastGameDialogue?
13 • Let’s stop achieving Baseball.
20 Shall we achieve BaseballBody by standings?
24 Shall we achieve BaseballBody by news?
27 Shall we achieve BaseballNews?
31 Shall we achieve BaseballNews again?

Fig. 2. Default versions of indicated lines in Fig. 1 before color added by rules in Fig. 10

Collaborative Discourse and Dialogue Trees 329

diet and exercise counseling and calendar event scheduling. Because these are
goal-directed interactions, chatbot technology was not appropriate.

Notice that Fig. 1 is a menu-based interaction, so that the system needs to
generate both the agent’s utterances and the user’s menu choices.

1.1 The Problems with Dialogue Trees

The traditional dialogue tree approach to implementing such interactions entails
manually authoring a tree of all possible agent utterances and user responses. For
example, Fig. 3 shows the dialogue tree that is used to generate the subdialogue
in lines 4–9 of Fig. 1. Notice that only some of the lines in the dialogue tree
actually appear in Fig. 1, due to the user’s menu choices. Now, imagine the
much larger dialogue tree required to represent the interactions resulting from
all possible user choices in Fig. 1.

The main advantage of such dialogue trees is that they give the author direct
and complete control over exactly what is said during the interaction. Further-
more, with the addition of typical advanced features, such as conditionals, side
effects, goto’s and computed fields, such dialogue trees can be quite flexible in
terms of implementing the desired control flow in a particular application.

The main disadvantage of dialogue trees is that they are very labor intensive,
both for initial authoring and subsequent modification and reuse. Our method-
ology addresses this disadvantage by partially automating dialogue generation.
To preview our results, we automatically generated the semantic content of the
21 italicized lines out of the total 36 lines in Fig. 1. (Of these 21 generated lines,
the 7 lines in Fig. 2 required additional manual effort to add “color” as described
in Section 6).

Furthermore, dialogue trees are an unsatisfying solution from the standpoint
of artificial intelligence research. In comparison, our methodology explicitly mod-
els (some of) the goals of an interaction and the meanings of (some) utterances
relative to those goals.

Our methodology arose out of two important observations about dialogues
such as Fig. 1. First, most dialogues are hierarchically structured collaborations,
even if they include only utterances and no actions. What this means is that the
overall dialogue has some goal, e.g., discussing baseball, which is decomposed

4 Really? But they aren’t so great at winning the World Series!
5 • I bet you are a Yankees fan.
7 No, I’m just joking with you.
8 • Oh.
9 • That’s too bad, it would be more fun if you were!

Ok, from now on I’m a Yankees fan.
• Great!

6 • Ah, but who cares? They play great ball!

Fig. 3. Dialogue tree underlying lines 4–9 of Fig. 1, as indicated

330 C. Rich and C.L. Sidner

10 lastgame: Did you catch {. . . }’s game?
11 • Yes

goto think
12 • No

goto standings
13 • I don’t want to talk about baseball anymore.

goto . . .
14 think: What did you think of it?

. . .
goto standings

20 standings: I wonder how the {. . . } are doing in the standings. Should I check?

Fig. 4. Tags and goto’s needed if a traditional dialogue tree were used to represent
lines 10–20 of Fig. 1. The {. . . } indicate computed fields (see Section 6).

into subgoals (subdialogues), such as discussing the last game, checking the
standings, and so on, recursively.

Second, we observed that many of the lines in a typical dialogue have to do
with what you might call the “control flow” within this hierarchical structure.
For example, the user’s choice in lines 1–3 will control which of two introductory
subdialogues they enter. Similarly, the user’s choice in lines 10–13 will control
whether or not they enter a subdialogue regarding the last game or whether they
end the overall baseball dialogue entirely. Eventually, of course, the conversation
gets down to (sub-. . .)subdialogues that consist entirely of application-specific
content, such as lines 4–9.

In the traditional dialogue tree approach, both the hierarchical structure and
the control flow is collapsed into the same representation together with the
application-specific content. Collapsing this information together causes many
problems. To start, this approach requires tags and goto’s to express control flow
branches and joins. For example, Fig. 4 shows the pattern of tags and goto’s that
would be needed in a traditional dialogue tree to represent the control flow in
lines 10-20. This kind of “goto programming” is well-known to be error prone,
especially when the logic is being frequently modified. Furthermore, such tangled
webs of goto’s make it difficult to reuse parts of the dialogue in other situations.

1.2 A Hybrid Methodology

Our solution to the problems with dialogue trees has been to evolve a hybrid
methodology in which we use a hierarchical task network (HTN) to capture
the high-level task (goal) structure and control flow of a large dialogue, with
relatively small (sub-)dialogue trees attached at the fringe of the HTN. As we
will see in detail below, making the hierarchical task structure of the dialogue
explicit makes it possible to automatically generate much of the interaction
shown in Fig. 1. The high-level task structure is also the part of the dialogue
that most often gets reused. Furthermore, because all of the subdialogues, such

Collaborative Discourse and Dialogue Trees 331

as Fig. 3, are at the fringe of the HTN, there is no need for goto’s—all of the
subdialogues “fall through” to the control structure of the HTN.2

To summarize our methodology:

– We start by laying out the hierarchical goal structure of the dialogue.
– Then we formalize the goal structure and control flow as an HTN.
– Next we add application-specific subdialogues at the fringe of the HTN.
– We iteratively test and debug the hybrid representation.
– Finally, we add color to the automatically generated utterances as desired

(e.g., the difference between the lines in Fig. 2 and Fig. 1).

At the end of this process we often have a high-level goal structure that can
be reused in other similar applications. For example, when we recently started
building a basketball dialogue, we found that we could reuse the baseball HTN
structure by substituting different subdialogues at the fringe. Bickmore, Schul-
man and Sidner [2] also experienced a high degree of reuse in applying a version
of this methodology to health dialogues.

This methodology is supported by a tool, called Disco for Games (D4g), which
is an extension of Disco, the open-source successor to Collagen [12, 13]. In the
remainder of this paper, we explain in detail how each line in Fig. 1 is generated
by D4g. First, Section 2 describes Disco’s HTN formalism and how we have
extended it in D4g to add dialogue trees at the fringe. Next, Section 3 describes
Disco’s lightweight utterance semantics, based on collaborative discourse theory,
which is the key to the automatic generation of both agent utterances and user
menus. Section 4 describes a small set of general rules that account for all of the
automatically generated dialogue in the example (Section 5). Finally, Section 6
describes how application-specific formatting rules are used to add color.

2 Hierarchical Task Networks

Fig. 5 shows a diagrammatic summary of the HTN and dialogue tree hybrid
structure underlying the interaction in Fig. 1. In this diagram, we follow the
common simplifying convention of omitting nodes when a task has only a single
recipe (decomposition) or a recipe (decomposition) has only a single step.

For the executable representation of HTN’s we use the ansi/cea-2018 stan-
dard [10], on which Disco is based. Lines 1–17 of Fig. 6 show the xml syntax in
ansi/cea-2018 for specifying the Baseball task, which is the toplevel goal of
the dialogue, and its four steps (subgoals): intro, lastGame, body and closing.
HTNs in this formalism include tasks with named and typed inputs, such as
favoriteTeam (a Team) and lastDay (a Day) and outputs, and one or more recipes
(<subtasks>)that decompose each non-primitive task into a sequence of (possibly
optional or repeated) steps. Optionality and repetition are expressed together
by the minOccurs and maxOccurs attributes of a step, both of which default to 1.

2 Readers with a knowledge of the history of programming languages will recognize
this as analogous to the argument for “structured programming” over goto’s.

332 C. Rich and C.L. Sidner

Fig. 5. Hierarchical task network underlying example interaction in Fig. 1

1 <task id="Baseball">

2 <input name="favoriteTeam" type="Team"/>

3 <input name="lastDay" type="Day"/>

4 <subtasks id="talk">

5 <step name="intro" task="BaseballIntro"/>

6 <step name="lastGame" task="LastGameDialogue" minOccurs="0"/>

7 <step name="body" task="BaseballBody" minOccurs="0"/>

8 <step name="closing" task="ClosingDialogue"/>

9 </subtasks>

10 </task>

11 <task id="BaseballIntro">

12 <subtasks id="redSox">

13 <step name="intro" task="RedSoxIntroDialogue"/>

14 <applicable> $Baseball.favoriteTeam==Team.ENUM.redSox </applicable>

15 </subtasks>

16 ...

17 </task>

18 <agent id="RedSoxIntroDialogue" text="Really? But they aren’t...">

19 <user text="I bet you are a Yankees fan.">

20 <agent text="No, I’m just joking with you.">

21 <user text="Oh."/>

22 <user text="That’s too bad, it would be more fun if you were!">

23 <agent text="Ok, from now on I’m a Yankees fan.">

24 <user text="Great!"/></agent></user></agent></user>

25 <user text="Ah, but who cares? They play great ball!"/>

26 </agent>

Fig. 6. Part of ansi/cea-2018 and Disco for Games (D4g) specification of Fig. 5

Collaborative Discourse and Dialogue Trees 333

ansi/cea-2018 also supports the use of JavaScript to specify preconditions
and postconditions of tasks and the applicability conditions of recipes. All of
these conditions use a three-valued logic, where the JavaScript null value rep-
resents unknown. For example, the <applicable> element on line 14 selects the
appropriate introductory subdialogue when the user’s favorite team is the Red
Sox.

Lines 18–26 of Fig. 6 are a straightforward xml encoding of the dialogue tree
in Fig. 3, which is the leftmost dialogue tree on the fringe of the HTN in Fig. 5.
The syntax used in these lines is transformed by D4g’s xslt preprocessor into
appropriate ansi/cea-2018 specifications that cause the structure of the dia-
logue tree to unfold properly when executed in Disco. Thus, from a D4g author’s
point of view, both the HTN and the dialogue tree portions of the specification
can be conveniently intermixed in a single file.3

3 Utterance Semantics

The key to automatically generating dialogue from the HTN portion of our hy-
brid representation is a lightweight semantics for dialogue utterances derived
from Sidner’s artificial language for negotiation [15] based on collaborative dis-
course theory [6, 8].

Collaborative discourse4 theory is fundamentally an interpretation theory. It
views dialogue as being governed by a hierarchy of tasks (goals) and a stack-
like focus of attention and explains how to interpret an utterance (by either
participant) as contributing to or changing the current task. Three fundamental
ways that an utterance can contribute to a task are to:

1. provide a needed input (Propose.What)
2. select the task or a subtask to work on (Propose.Should), or
3. select a recipe to achieve the task (Propose.How).

In Disco, these three fundamental types of contribution are formalized, respec-
tively, in the semantics of the first three builtin utterance types shown in Fig. 7
along with their default formatting. The semantics of these utterances also in-
cludes Sidner’s model of the negotiation of mutual beliefs via proposal, accep-
tance and rejection [15]. Understanding these semantics is very important for
the dialogue designer because, as we will see in the next section, they are the
link between the HTN structure and the automatically generated dialogue ut-
terances.

For example, when a dialogue participant utters a Propose.What, it means (in
part) that the speaker:

– believes the proposition that the input to the task is value and
– intends that the hearer believe the same thing.

3 D4g also supports transferring control to an HTN from inside a dialogue tree, so
that HTN’s and dialogue trees can in fact alternate in layers. However, we do not
use this feature very often.

4 In this work we consider only two-participant discourse, i.e., dialogue.

334 C. Rich and C.L. Sidner

Propose.What(task, input, value) The task input is value.
Propose.Should(task) Let’s achieve task.
Propose.How(task, recipe) Let’s achieve task by recipe.

Accept(proposal) Yes.
Reject(proposal) No.

Ask.What(task, input) What is the task input?
Ask.Should(task) Shall we achieve task?
Ask.How(task, recipe) Shall we achieve task by recipe?
Ask.How(task) How shall we achieve task?

Propose.Stop(task) Let’s stop achieving task.
Ask.Should.Repeat(task) Shall we achieve task again?

Fig. 7. The main builtin Disco utterance types and their default formatting

Similarly, uttering a Propose.Should proposes a task or subtask, such as an op-
tional step, to work on. Uttering a Propose.How proposes a recipe to use. If
the hearer Accept’s one of these proposals, then mutual belief in the respective
proposition is achieved. The hearer can also Reject a proposal.

Utterances can also be questions. In Sidner’s framework, questions are mod-
eled as proposals by the speaker that the hearer provide information. For ex-
ample, when a dialogue participant utters an Ask.What (see Fig. 7), it means (in
part) that the speaker intends that the hearer respond by uttering a Propose.What

that provides a value for the specified task and input. The other three utterance
types starting with Ask have analogous semantics.

Disco implements these utterance semantics in its dialogue interpretation al-
gorithm. Basically, to interpret a new utterance, the algorithm visits every live5

task node in the HTN tree and asks the question, “Could this new utterance
contribute to this task?” If the answer is yes, Disco attaches the new utterance
as a child of the task node; otherwise it marks the utterance as “unexplained.”
(For more details about Disco’s dialogue interpretation algorithm see [12].)

4 Generation Rules

Disco treats dialogue generation as the algorithmic inverse of interpretation. In
other words, Disco visits every live task node in the current HTN tree and asks
the question, “What are the possible utterances that could contribute to this
task?” The answers to this question are the generation candidates.

Fig. 8 shows the overall functional flow of dialogue generation in Disco in more
detail. Starting on the left, the first step is to apply the general generation rules
described in this section to the current dialogue state, yielding a set of candidate
utterances for either the agent or the user (depending on whose turn it is in the
interaction). Each generation rule produces zero or more candidate utterances.
These candidate utterances are then sorted according to heuristic priorities (see

5 A task is live if and only if its precondition is not false and all of its predecessor
steps, recursively up the tree, have been successfully completed.

Collaborative Discourse and Dialogue Trees 335

Fig. 8. Functional flow of dialogue generation in Disco

define AskWhatRule (task)
foreach input in inputs(task)
if input does not have a value
then return { new Ask.What(task, input) }

return {}

Fig. 9. Pseudocode for Ask.What generation rule (applied to live task nodes)

below). If utterances are being generated for the agent, then the highest priority
candidate is chosen for the agent to speak; if utterances are being generated for
the user menu, then the (perhaps truncated) candidate list is used to populate
the user menu. Finally (see Section 6), optional application-specific formatting
rules are applied to add color to some utterances, as desired.

Twelve general rules generate the content of all the lines in Fig. 1. These same
rules are used in all of the dialogue applications we have built so far. There is one
rule for each of the eleven utterance types in Fig. 7, plus an additional rule that
generates the appropriate agent utterance or user menu entries from a dialogue
tree on the fringe, when it is live.

Each generation rule is implemented as a small Java method that is applied
by the generation algorithm to each live task node in the HTN tree as described
above. For example, Fig. 9 shows pseudocode for the rule that generates Ask.What
utterances. Notice that this rule will not return a question for a particular input if
that input already has a value (which could happen either via dialogue or some
other system process). In general, the generation rules only return candidate
utterances when the relevant information is not already known.

Some rules behave differently depending on whether candidates are being
generated for the agent or the user. For example, when the Propose.What rule is
being executed for the user and the input type is an enumerated datatype, the
rule returns a set of utterances (menu choices) that includes a Propose.What for
each possible value.

Currently, because our agent is always subordinate to the user, the rules for
Accept and Reject only generate candidates for the user menu. The inputs to
these rules are task nodes that are dynamically added to the dialogue state
whenever the agent makes a proposal (including questions). Notice that the

336 C. Rich and C.L. Sidner

default formatting of Accept and Reject is simply “Yes” or “No,” but that the
underlying semantics includes the proposal being accepted or rejected.

The heuristic priorities used to sort candidate utterances have the most impact
in agent generation, since only the topmost candidate is actually uttered by the
agent. (In the case of the user, the priorities only affect the order in which the
menu choices are displayed.) Currently, each of the twelve general rules has a
fixed priority—we do not tweak priorities for a particular dialogue. Although
these priorities are not yet grounded in any cognitive theory, they do follow a
logical order of design decisions. For example, the Ask.What rule has a higher
priority than the Ask.How rule, since the properties of the input to a task may
affect the best recipe choice.

5 The Example Revisited

We can now revisit the example in Fig. 1 and explain how all of the italicized
automatically generated lines are produced (at least in uncolored forms shown
in Fig. 2). Starting with the agent utterances:

– Line 1 is generated by the application of the Ask.What rule to the favoriteTeam
input of the Baseball task (see Fig. 6, line 2). Notice that no agent question
is generated for the lastDay input of Baseball, because this input has already
been bound as part of the system initialization.

– Line 10 is generated by the application of the Ask.Should rule to the LastGame-
Dialogue step of Baseball (see Fig. 6, line 6).

– Line 13 is generated by the Propose.Stop rule, which only returns an ut-
terance when applied to the toplevel goal of the dialogue (Baseball in this
case). This rule provides the user with a convenient menu option for exiting
the whole dialogue. This rule has some internal heuristics for when to return
an utterance, depending on the dialogue state, so that the exit option is not
always offered.6

– Lines 20 and 24 are generated by the application of the Ask.How rule to the
standings and news recipes for BaseballBody (see Fig. 5).

– Line 27 is generated by the application of the Ask.Should rule to BaseballNews

(see Fig. 5).
– Line 31 is an Ask.Should.Repeat, which is a variant of Ask.Should that is

generated whenever the task being proposed is the second or subsequent
instance of a repeated step, such as BaseballNews. The reason for this variant
is to facilitate attaching a different formatting rule, as we will see in the next
section.

Regarding the automatically generated user menu choices in Fig. 1:

– All of the Yes and No menu choices are generated by the Accept and Reject

rules.

6 Our agent currently automatically accepts all proposals by the user.

Collaborative Discourse and Dialogue Trees 337

– Lines 2 and 3 are generated by the application of the Propose.What rule
to the favoriteTeam input of the Baseball task. As mentioned above, this
rule checks for the special case of enumerated datatypes, in which case it
generates a Propose.What for each possible value. Furthermore, the default
formatting for these utterances is simply the printable string for the data
value. Enumerated datatypes in Disco are declared as JavaScript objects
with an ENUM field (see Fig. 6, line 14).

In summary, we have now seen how all of the content in the example interaction is
generated by the application of the general rules described above to the dialogue
structure in Fig. 5. In the next section, we will see how the differences between
the lines in Fig. 1 and in Fig. 2 are achieved.

6 Adding Color with Formatting Rules

The main reason why authors like dialogue trees is that it allows them to cre-
atively tailor their use of language to the character and the narrative context—
what we call “adding color” to the dialogue. In other words, the dialogues don’t
read like they were generated by a computer.

In the methodology we have evolved, we have found it best to postpone adding
color until late in the authoring process. First, we develop and debug the HTN,
such as Fig. 5, that represents the goal hierarchy and desired control flow between
the fringe subdialogues. At the end of this phase, we have a working interaction
that looks like Fig. 1, except with the corresponding lines from Fig. 2 appearing
instead. Then we add color as desired via formatting rules. In this example, there
were seven lines that needed color.

Formatting rules in Disco are specified in a Java properties file, which is
organized as one key/value pair per line with an equal sign separating the key
from the value, as shown in Fig. 10. Each key ends in @format with a prefix
describing the type of utterance to which it is to be applied. For example, the
rule in line 1 of Fig. 10 applies to all occurrences of Ask.What in which the task
is Baseball and the input is favoriteTeam. The rule in line 10 applies to all
occurrences of Ask.Should in which the task is LastGameDialogue, and so on.
When a rule is applied, the value part of the rule is substituted for the default
formatting of the corresponding utterance.

1 Ask.What(Baseball,favoriteTeam)@format = Which team... rooting for?

10 Ask.Should(LastGameDialogue)@format = ...{$Baseball.lastDay}’s game?

13 Propose.Stop(Baseball)@format = I don’t... about baseball anymore.

20 Ask.How(BaseballBody,standings)@format = I wonder... Should I check?

24 Ask.How(BaseballBody,news)@format = Do you want to hear... news?

27 Ask.Should(BaseballNews)@format = Ok, I have several interesting...

31 Ask.Should.Repeat(BaseballNews)@format = Got time for another story?

Fig. 10. Formatting rules applied to indicated lines in Fig. 2

338 C. Rich and C.L. Sidner

The rule on line 10 of Fig. 10 illustrates the use of computed fields, which is
an important feature of the formatting system (that is also available for utter-
ances that appear in dialogue tree). Curly brackets {...} in an utterance enclose
arbitrary JavaScript code that is executed during the final formatting process
to compute a string to substitute at that point in the utterance. In line 10, this
feature is used to retrieve the value of the lastDay input of the most recently
created instance of Baseball.

A commonly used special case of computed fields that is supported in Disco
formatting rules (but not illustrated in this example) is using a vertical bar | to
separate a set of alternative variations. For example, if Accept@format were set
to Ok|Yup|Sure, the formatting system would systematically use these variations
instead of all the Yes’s in Fig. 1.

7 Related Work

Both HTNs [5] and dialogue trees [4] are very well known and commonly used
techniques. HTNs have been used by others, such as Bohus and Rudnicky [3] or
Smith, Cavazza et al. [16], for generating dialogue, but the goal of these efforts
has been to eliminate dialogue trees, rather than coexist with them, as we have.
Orkin et al. [9] have tried to eliminate manual dialogue authoring by applying
data mining techniques to crowdsourced data to automatically create HTNs,
which are then used to generate new dialogues.

This paper has grown out of our own previous work in several ways. In [11],
we first described the idea of discourse generation as the algorithmic inverse
of discourse interpretation and introduced the model of applying rules (called
“plugins” in that paper) to the live nodes of an HTN to generate dialogue candi-
dates, as shown in the first step of Fig. 8. We first described D4g in [7], although
the emphasis in that work was on combining actions and utterances in a single
representation, whereas this paper concerns itself entirely with utterances. The
DTask system [1, 2], also an extension of ansi/cea-2018 and Disco, used HTNs
with adjacency pairs (a single agent utterance with a user response menu) at the
fringe, instead of complete dialogue trees, as in D4g. That work also explored
the reuse advantages of HTNs in dialogue.

8 Conclusion

We have demonstrated, using an example baseball dialogue, how combining hi-
erarchical task networks with dialogue trees greatly improves the authoring pro-
cess as compared to using dialogue trees alone. Our methodology is supported by
open-source tool, called Disco for Games (D4g), that is available by contacting
the authors.

We have used D4g to author similar dialogues on other topics, such as fam-
ily and weather, with similar positive experiences in terms of the number of
automatically generated lines. (We do not quote the fraction of automatically

Collaborative Discourse and Dialogue Trees 339

generated lines here as a statistic, because this number is easily skewed by the
number of lines in the subdialogues at the fringe of the HTN.)

Looking toward the future, we see D4g as a step along the road toward totally
automatic generation of dialogue. We expect to continue to extend the set of
semantically specified utterance types (the current set is already in fact larger
than shown in Fig. 7), which along with additional generation rules, will increase
the amount of automatically generated content in dialogues. For example, we are
interested in revisiting the automatic generation of tutorial dialogues, as we did
in [14].

Acknowledgements. We would like to thank Fred Clinckemaillie and JJ Liu
for their help with the baseball dialogue.

This material is based upon work supported by the National Science Foun-
dation under Grant No. IIS-0811942 and IIS-1012083. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science
Foundation.

References

1. Bickmore, T., Schulman, D., Shaw, G.: DTask and LiteBody: Open Source,
Standards-Based Tools for Building Web-Deployed Embodied Conversational
Agents. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009.
LNCS, vol. 5773, pp. 425–431. Springer, Heidelberg (2009)

2. Bickmore, T., Schulman, D., Sidner, C.: A reusable framework for health coun-
seling dialogue systems based on a behavioral medicine ontology. J. Biomedical
Informatics 44, 183–197 (2011)

3. Bohus, D., Rudnicky, A.: The RavenClaw dialog management framework: Archi-
tecture and systems. Computer Speech and Language 23(3), 332–361 (2009)

4. Despain, W.: Writing for Video Games: From FPS to RPG. A. K. Peters (2008)
5. Erol, K., Hendler, J., Nau, D.: HTN planning: Complexity and expressivity. In:

Proc. 12th National Conf. on Artificial Intelligence, Seattle, WA (July 1994)
6. Grosz, B.J., Sidner, C.L.: Plans for discourse. In: Cohen, P.R., Morgan, J.L., Pol-

lack, M.E. (eds.) Intentions and Communication, pp. 417–444. MIT Press, Cam-
bridge (1990)

7. Hanson, P., Rich, C.: A non-modal approach to integrating dialogue and action.
In: Proc. 6th AAAI Artificial Intelligence and Interactive Digital Entertainment
Conf., Palo Alto, CA (October 2010)

8. Lochbaum, K.E.: A collaborative planning model of intentional structure. Compu-
tational Linguistics 24(4), 525–572 (1998)

9. Orkin, J., Smith, T., Roy, D.: Behavior compilation for ai in games. In: Proc.
6th AAAI Artificial Intelligence and Interactive Digital Entertainment Conf., Palo
Alto, CA, pp. 162–167 (October 2010)

10. Rich, C.: Building task-based user interfaces with ANSI/CEA-2018. IEEE Com-
puter 42(8), 20–27 (2009)

11. Rich, C., Lesh, N., Rickel, J., Garland, A.: A plug-in architecture for generating
collaborative agent responses. In: Proc. 1st Int. J. Conf. on Autonomous Agents
and Multiagent Systems, Bologna, Italy (July 2002)

340 C. Rich and C.L. Sidner

12. Rich, C., Sidner, C.: Collagen: A collaboration manager for software interface
agents. User Modeling and User-Adapted Interaction 8(3/4), 315–350 (1998);
reprinted in Haller, S., McRoy, S., Kobsa, A. (eds.): Computational Models of
Mixed-Initiative Interaction, pp. 149–184. Kluwer Academic, Norwell (1999)

13. Rich, C., Sidner, C., Lesh, N.: Collagen: Applying collaborative discourse theory
to human-computer interaction. AI Magazine 22(4), 15–25 (2001)

14. Rickel, J., Lesh, N., Rich, C., Sidner, C.L., Gertner, A.S.: Collaborative Discourse
Theory as a Foundation for Tutorial Dialogue. In: Cerri, S.A., Gouardéres, G.,
Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 542–551. Springer, Heidelberg
(2002)

15. Sidner, C.L.: An artificial discourse language for collaborative negotiation. In: Proc.
12th Nat. Conf. on Artificial Intelligence, Seattle, WA, pp. 814–819 (August 1994)

16. Smith, C., Cavazza, M., Charlton, D., Zhang, L., Turunen, M., Hakulinen, J.:
Integrating Planning and Dialogue in a Lifestyle Agent. In: Prendinger, H., Lester,
J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 146–153. Springer,
Heidelberg (2008)

