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Abstract. We have implemented a general-purpose algorithm for plan-
ning appropriate joint activities in the context of an interactive sys-
tem that has a long-term relationship with its user. The algorithm is
data-directed and explicitly models the difference between relationship
stages, such as stranger, acquaintance and companion. We have con-
ducted a short laboratory evaluation of the algorithm that demonstrates
the plausibility of its results according to the judgements of participants.

1 Introduction

It is no longer uncommon for people to use electronic assistants of various kinds
every day of their lives for years on end. Many of these systems change their
behavior over time in a personalized way, such as remembering your purchasing
preferences. However, none of these systems currently has the explicit goal of
developing a close relationship with its user or the ability to plan for how to
achieve that goal.

One of the main methods for developing closeness is appropriate shared ac-
tivities. For example, an electronic home companion for isolated older adults1

might support a wide range of activities, including chatting about the weather
or sports, assisting with the maintenance of a personal appointment calendar,
and coaching the user to get more exercise. Furthermore, the user might interact
with the system several times per day for weeks or months or more. Clearly, cer-
tain activities, such as chatting about the weather, are appropriate on the very
first day of interaction, while other activities, such as exercise coaching, should
wait until the system and user develop a closer relationship. Even with a close
friend, however, you don’t normally start a conversation with a very difficult
topic, such discussing a serious illness, but rather build up to it with some social
chit-chat first.

Furthermore, because we want to support intelligent virtual agents that can
sometimes take the initiative in starting activities, it is not adequate to always
simply present the user with a list of all possible activities to choose from. An
agent that can take initiative needs to have a dynamic model of the relation-
ship and use it to itself plan which activities (and perhaps in what order) are
appropriate for the current interaction session.

The planning algorithm presented in the remainder of this paper is very
general. Both the specifics of the activities and interaction with the user are
abstracted, so that it can be applied to any system that seeks to develop a
long-term relationship with its user.
1 such as http://www.cs.wpi.edu/~rich/always

A shorter version of this paper with the same title
appeared in Proc. Int. Conf. on Intelligent Virtual Agents, 
Edinburgh, UK, 2013. 
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1.1 Related Work

The psychology and sociology literature has explored many aspects of relation-
ships including the factors contributing to relationships [6], the varying dimen-
sions of relationships [11], and the behaviors involved in relationship maintenance
[9]. In social penetration theory [1], the development of a relationship is modeled
in terms of the increasing breadth and depth of topics available for discussion:
as two people grow closer, they are able to discuss more intimate topics, as well
as a broader range of topics at a given level of intimacy. Knapp [8] proposed a
model of relationship development in terms of relational stages, such as stranger,
acquaintance, friend, etc.

In the relevant AI and HCI literature, Bickmore [2] applied Thomason’s no-
tion of accommodation [10] to modeling collaborative relationships. Bickmore
proposed that long-term collaborators develop mutual expectations that when-
ever certain common circumstances (activities) arise, each person will provide
the appropriate assistance (accomodate) without being explicitly requested. Fur-
thermore, Bickmore then defined the current stage of a relationship as the set of
currently accomodated activities. The notion of available activities in our work
(described further below) is inspired by Bickmore’s model of accomodation, but
avoids the need to commit to a fixed set of symbolic names for relational stages.

Bickmore and Schulman [4] developed a reactive algorithm based on Bick-
more’s staged model of relationship, which decided when it was appropriate to
choose a particular dialogue act as a “bid” to advance the relationship to the
next stage. In their system, the current closeness of the relationship was deter-
mined by explicit questionnaires given to the user every few days. In contrast,
our approach is a planning algorithm that automatically keeps track of the close-
ness level and takes into account both the goal of increasing the closeness of the
relationship, as well as instrumental goals, such as helping the user get more
exercise.

Several other systems have also influenced our current work. The REA vir-
tual agent [5] used a simple model of its relationship with the user in order to
determine when to engage in social chit-chat versus task-oriented dialogue. The
FitTrack virtual exercise coach [3] used affective language and nonverbal signals
to try to increase closeness with the user. The Autom robotic weight loss coach
[7] modeled its relationship with the user as being in one of three states: initial,
normal and needing repair.

1.2 System Framework

Fig. 1 shows the activities planner in context. Whereas other parts of the inter-
active system are busy managing the moment-by-moment details of interaction,
the role of the activities planner is to take a long-term view of the relationship
with the user. In particular, the activities planner is concerned with increasing
the closeness of the relationship through appropriate choice of joint activities.
Closeness is important both for its own sake and because it is a prerequisite for
some useful activities.
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In order to allow the planner to be reused, we have made as few assumptions
as possible about the system in which it is embedded. We call the basic operating
cycle of the overall system a session. A session might be the interval between the
user’s login and logout or, in the case of a continuously operating robot, between
engagement initiation and termination. In the virtual companion system we are
building, we expect a typical session to last 20 to 30 minutes and occur several
times per day over a six-week period.

At the start of each session, the ac-
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Fig. 1. System framework.

tivities planner produces a session plan.
Figure 3 shows examples of session plans.
Notice that these plans are very high-
level. They specify the order of activ-
ities, such as “baseball chat” followed
by “calendar help,” but not the spe-
cific details of the activity, such as the
dialogue, that will occur during the in-
teraction session.

Session plans are also conditional.
For example, the left plan in Fig. 3 spec-
ifies that after “baseball chat” either
“humorous anecdotes” or “calendar help” can occur. The choice between these
activities is made during the interaction session, either by the user (e.g., as the
response to a menu choice) or by the system (e.g., based on its heuristics).

The key state variable in the framework in Fig. 1 is Co ≥ 0, the baseline
closeness. This is the closeness level at the start of the next interaction session.
It is used by the planner in the planning process and updated at the end of each
interaction session, based on the results of the session.

The baseline closeness is similar to the “current stage of the relationship” in
related work, except that in our framework, we use a (non-negative) number as
the value of this variable to avoid committing to a predefined set of symbolic
names for relational stages. Our approach also unifies the concept of the baseline
closeness that carries over between sessions with the more contextual level of
closeness that increases during a given session. The details of how closeness
values are specified and used will be discussed further below.

The main input to the planning process is a database of activities metadata.
For each activity, the planner needs to know the minimum baseline closeness
at which it becomes available and the four planning parameters shown in the
example activities database in Table 1. The meaning and use of this metadata in
the planner will be explained in detail below. The important point here is that
each activity name in the database corresponds to an activity that the overall
system is capable of performing during an interaction session.

Finally in Fig. 1, at the end of each session the planner receives information
about the results of the session, primarily which activities were successfully com-
pleted. The planner uses this information to compute if and how to update the
baseline closeness for the next session.
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2 The Planning Algorithm

The activities planner uses a simple exhaustive forward-chaining algorithm to
find conditional plans all of whose final states have high utility.

2.1 Activities Metadata

Actions in the plan are activities, each of which is described by the following five
metadata parameters:

– CoA, the minimum baseline closeness at which this activity becomes available,
– CA, the minimum closeness required to start this activity,
– ∆tA, the expected duration of activity in minutes,
– IA, the expected instrumental utility of this activity, and
– ∆CA, the expected relational utility of this activity.

Before describing how these parameters are used in the planning algorithm,
it will be useful to explain their meaning from the point of view of the “author”
of the metadata. For example, Table 1 shows the metadata we authored for the
activities used in our evaluation study.

First notice that the activities (rows) in the table are divided into three
groups. This grouping specifies the minimum baseline closeness at which each
activity becomes available. An activity is available if and only if its minimum
baseline closeness is satisfied, i.e.,

CoA ≤ Co (1)

Thus the first four activities are always available; the next group are available
only when the baseline closeness is at least 2; the third group only when it is at
least 4.

The scale used for closeness is entirely up to the metadata authors. In our
minds, we thought of 0 as corresponding roughly to the system’s relational

Activity A CA ∆tA IA ∆CA

Co
A = 0 (stranger)

baseball chat 0 10 1 2

weather chat 0 10 1 1

play cards 0 20 1 2

watch TV 0 10 0 1

Co
A = 2 (acquaintance)

humorous anecdotes 2 10 1 2

discuss politics 2 20 2 2

favorite books 3 20 1 4

childhood stories 3 20 2 4

calendar help 3 10 3 1

exercise routine 3 30 5 2

Activity A CA ∆tA IA ∆CA

Co
A = 4 (companion)

talk about family 4 10 2 3

organize medications 4 10 3 1

scrapbook 5 20 2 3

family emails 5 20 2 3

discuss non-recent

family death 7 20 1 6

convince user

write important letter 7 10 5 1

discuss sibling illness 8 20 4 4

discuss serious

medical diagnosis 8 20 6 3

Table 1. Activities metadata for evaluation study.
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“stage” being a stranger, 2 an acquaintance and 4 a companion. We will use
these terms in this paper as a convenient abbreviation for these closeness levels,
but they do not exist in the implementation.

The first parameter column (CA) in Table 1 contains values from zero to 8,
specifying the minimum required closeness required to start an activity within
a session. The fact that all of the activities available at the stranger stage also
have a minimum required closeness of zero means that they can all be started
at the beginning of any session. In contrast, the required closeness value of 8
for discussing a serious medical diagnosis (last row in Table 1) means that even
with a companion, this activity (although available) needs to wait until later in
a session when some additional contextual closeness has been built up (as we
will see in the planning algorithm below).

The second parameter column (∆tA) is the author’s rough estimate of how
long the activity typically takes. This information is used primarily to allow
the planner to limit its effort to some reasonable time horizon. The estimated
duration does not need to be highly accurate.

The third and fourth parameter columns specify the two components of the
expected utility function that the planner uses to prune the plans it constructs.
As with the required closeness, the scale for these values is entirely up to the
metadata authors. (The weighting factor v in Equation 2 is used to adjust be-
tween the closeness and utility scales.) The instrumental utility, IA, is intended
to capture the practical benefit of the activity, whereas the relational utility,
∆CA, is intended to capture the contribution of an activity to increasing the
closeness of the relationship, i.e., the purely social benefit of the activity.

For example, in the fourth row of Table 1 we model watching TV as having
no instrumental utility (IA = 0) and a small relational utility (∆CA = 1). Other
activities, such as discussing a serious medical diagnosis (last row in Table 1),
may have both high instrumental utility (IA = 6) and high relational utility
(∆CA = 3), and so on.

Equation 2 below defines the total expected utility UA of performing activity
A as the weighted sum of these two parameters, where u and v are the weighting
factors. Notice that UA includes the relational utility because the agent has the
explicit goal of achieving a closer relationship with the user.

UA = uIA + v∆CA (2)

2.2 Generating Planning States

The planning state is represented by a three-tuple of non-negative numbers
〈t, C, U〉, where

– t is the time in minutes from the start of the session,
– C is the current closeness in the session, and
– U is the expected utility of reaching this planning state.

Fig. 2 is an abstract example of the execution of the planning algorithm that
illustrates how planning states are generated based on the action descriptions



6 Activity Planning for Long-Term Relationships

(activity metadata). Planning states are represented by rectangles and actions
by arrows. (Ignore the difference between bold and non-bold lines for now.) The
inset table shows the planning metadata parameters for three abstract activites,
α, β and γ, all of which are available when Co = 0. The utility weighting factors
(see Equation 2) are both 1.

The initial planning state

t = 0 #
C = 0 #
U = 0 #

t = 30#
C = 3 #
U = 1 #

t = 35#
C = 3 #
U = 5 #

t = 50#
C = 4 #
U = 8 #

t = 35#
C = 3 #
U = 5 #

t = 40#
C = 3 #
U = 5 #

t = 55#
C = 4 #
U = 12#

t = 20#
C = 2 #
U = 1 #

t = 25#
C = 2 #
U = 5 #

t = 10#
C = 1 #
U = 1 #

α(

α(

β(

β(

β(

α(

γ(

γ(

α(

Co= 0 #
(

A CA ∆tA IA ∆CA

α 0 10 0 1

β 1 15 3 1

γ 2 30 5 2

Fig. 2. Abstract example of planning algorithm.

is always at t = 0, with base-
line closeness, C = Co (in
this example Co = 0), and
utility U = 0. The possi-
ble next planning states are
generated by applying each
available activity, A, whose
minimum required closeness
is satisfied, i.e.,

CA ≤ C (3)

In this example only α’s re-
quired closeness is satisfied.

The components of the
next state 〈t′, C ′, U ′〉 result-
ing from applying activity
A to state 〈t, C, U〉 are:

t′ = t+∆tA (4) C ′ = C +∆CA (5) U ′ = U + UA (6)

Notice that the relational utility, ∆CA, is used twice in these updating rules. It
is added to both the closeness and also to the utility (via Equation 2 above).

Returning to Fig. 2, in the state after applying α, the closeness is 1, so that
both α and β can be applied, yielding the two possible successor states shown. All
three activities can be applied in each of these two states, leading to 6 terminal
states with a planning horizon of 30.

2.3 Utility Damping

Notice that this plan involves possibly performing activity α twice in a row. It
is usually inappropriate to perform the same activity repeatedly, because some
activities intrinsically deliver diminishing returns and/or users simply become
bored. Our planning algorithm therefore incorporates a refinement of the utility
calculation above that takes into account preceding occurrences of the same
activity in the same session. Longer-term shifts in the utility values for activities
are outside the scope of the activity planner and could be handled by other
learning or user modeling techniques.

Thus in our refined planning algorithm the utility of an activity is modeled as
a function of time defined as follows, where there are n ≥ 0 preceding completed
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occurrences of A at times ti < t:

UA(t) = UA

n∏
i=0

(
1− 1

(1 + t− ti)d

)
(7)

This definition has the effect of reducing (damping) the utility of A asymptot-
ically to zero whenever there are preceding occurrences. The smaller the value
of the damping constant, d, the stronger the damping effect. For example, in
Fig. 2 we are using a very small value of d that reduces the utility of the second
occurrence of α to approximately zero (which is why U = 1 in the state after
the second application of α).

2.4 Pruning
The exhaustive plan generation algorithm described above stops whenever a
planning state’s time meets or exceeds a specified limit (the horizon). For ex-
ample, in Fig. 2 we have set the planning horizon at 30 minutes. Each terminal
state in the plan has an expected utility. In Fig. 2 these utility values range from
1 to 12. The final step in the planning algorithm is to prune all paths in the
plan that lead to a terminal state with utility below some threshold. In Fig. 2
we have used a threshold of 8. The bold lines in the figure indicate those parts
of the original plan that remain in the session plan after pruning.

3 Running the Framework

Returning now to Fig. 1, let’s look at an example of how the planning algorithm
works together with the interaction session. The left plan in Fig. 3 shows was
produced with a baseline closeness of 3 and the metadata in Table 1. Let’s
suppose that during the interaction session using this plan, the user successfully
completes the baseball chat, chooses and successfully completes the calendar
help activity, and then ends the session.

Information about the successfully completed activities (signified by the
check marks in Fig. 3) is passed back to the activities planner at the end of
the session, as indicated in Fig. 1, which allows the planner to calculate that the
closeness at the end of the session was 6 (the two completed activities added to
the initial closeness of 3). The planner therefore updates the baseline closeness
to 6, so that, for example, if the next session starts immediately, it will continue
with the same contextual closeness as where the current session left off. This
also means that the relationship has in effect advanced to the companion stage,
so that more activities will be available in the next session.

baseball(
(chat(

humorous(
anecdotes(

calendar(
help(

childhood(
stories(

discuss(
poli#cs(

favorite(
books(

✓(
✓(✓(

scrapbook(weather(
chat(

discuss(serious(
medical(diagnosis(

discuss(sibling(
illness(

convince(user(write(
important(le@er(

organize(
medica#ons(

talk(about(
family(

Fig. 3. Plan at end of first session (left) and at start of next session (right).
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3.1 Time Decay

This updating rule for baseline closeness is too simple, however, because it does
not take into account the fact that closeness decays with the passage of time
if there is no interaction (i.e., between sessions). We therefore use the following
refined definition for baseline closeness as a function of time, where Co is the
updated baseline closeness at the end of the previous session (as described above)
and tf is the ending time of the previous session. Notice that unlike in the
planning update rules above, where t is the number of minutes from the start of
the session, time in this equation is real-world time.

C0(t) = max
(

stage(Co),
Co

(1 + t− tf )k

)
(8)

The ‘stage’ function above returns the largest minimum baseline closeness in the
current activities database less than or equal to the given value, i.e., stage(Co) ≤
Co. In this example, stage(6) returns 4 for Table 1, i.e., the minimum baseline
closeness for companions. The rest of this definition has the effect of reducing
(decaying) the baseline closeness to stage(Co) as time passes. The larger the
value of the decay constant, k, the more quickly the closeness decays.

Thus, returning to our example, when the next session starts some time
later, the planner uses Equation 8 to calculate the baseline closeness for the
initial planning state. The right plan in Fig. 3 is the resulting plan, in which we
assume that enough time has passed since the first session to fully decay the
baseline closeness to 4, which is used as the starting value for the planner, as
explained above. Notice that the plan for the this session includes activities that
were not available for the first session, such as talk about family and organize
medications.

4 Evaluation

The ultimate evaluation of the activities planner will occur when we embed it in
our companion agent and field test it in long-term relationships. However, since
that field test is more than a year away, we undertook a laboratory user study
to evaluate whether the planner produces plans that at least are consistent with
general expectations of how relationships develop. Our basic approach is to see
whether changing key features of the planner’s algorithm has a measurable effect
on the naturalness and plausibility of the resulting plans.

4.1 The Antisocial Planner

For reasons that will be made clear below, we call the modified planner the
“antisocial” planner, as compared to our current “social” planner. The antisocial
planner violates three key features of our activities planning algorithm.

First, the antisocial planner ignores Equation 1. In other words, whereas the
social planner only applies activities that are appropriate to the current baseline
closeness, the antisocial planner considers all activities as available at all times.
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Second, the antisocial planner ignores Equation 3. In other words, whereas
the social planner waits until later in a session to start activities to require more
than the baseline closeness, the antisocial planner will start any activity at any
time.

Finally, the antisocial planner goes even further toward being antisocial by
using a different utility computation. Instead of Equations 2 and 7, it uses the
following equation to compute the utility of activity A.

UA(t) = uIA − v∆CA + max(0, CA − C(t)) (9)

In this equation, the relational utility (∆CA) is subtracted instead of added to the
overall utility, causing the antisocial planner to prefer activities that contribute
less to the relationship. The last term in this equation causes the antisocial
planner to not only include activities that would be unavailable in the social
planner, but to prefer such activities—specifically, the more that an activity’s
required closeness is violated, the higher its utility. (The max function prevents
any positive utility being added when CA is greater than C(t).)

4.2 Hypothesis

The hypothesis of our study is that people will judge interaction scenarios based
on plans generated by the social planner as more natural and plausible than
scenarios based on plans generated by the antisocial planner.

4.3 Study Materials

Fig. 4 shows an example of a novel questionnaire we designed to elicit judge-
ments regarding the relative naturalness and plausibility of several alternative
interaction scenarios. In particular, we were concerned about not forcing the
participants to specify a total order on the scenarios, because we thought it
likely that some choices might be “tied” in their preferences. Our solution was
to allow participants to enter more than one letter (identifying a scenario) in
each of the boxes on the left of the form. Thus, in the example questionnaire,
the participant has indicated that she thinks A is the most natural scenario, C
is the least natural, and B and D are in between. We discuss below how these
questionnaires were scored.

We used this questionnaire design to compare judgements in six different
conditions: social versus antisocial planner, each with baseline closeness values
of 0 (stranger), 2 (acquaintance) and 4 (companion).

First, we ran the planner in each condition and chose the two highest-utility
paths through the six generated conditional plans, giving us 12 total scenarios.
Then, we produced 4 versions of the questionnaire for each baseline closeness
level, each contained two scenarios generated by the social planner and two
generated by the antisocial planner in a different random overall order.

We also produced a training questionnaire using the same format, based on
food preferences, for the participants to practice with (see below).
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!

In these scenarios, Samantha and Katherine have met several times over the past two weeks, 
and have become somewhat comfortable with each other.  

Please rank the four interactions on the diagram below in terms of how natural and plausible 
they seem, using the labels A, B, C, and D.!

A 
First, Samantha and Katherine talk about a recent baseball 
game for 20 minutes. 
Next, they trade humorous anecdotes for 20 minutes. 
After that, Katherine tells childhood stories for 40 minutes. 
Then, they organize Katherine's schedule for 20 minutes. 
Next, they talk about Katherine's family for 20 minutes. 
Finally, they sort out Katherine's medicine for 20 minutes. 

B 
First, Samantha and Katherine talk about a recent baseball 
game for 20 minutes. 
Next, they organize Katherine's schedule for 20 minutes. 
After that, they sort out Katherine's medicine for 20 minutes. 
Then, they talk about Katherine's family for 20 minutes. 
Next, Katherine tells childhood stories for 40 minutes. 
Finally, they trade humorous anecdotes for 20 minutes. 
C 
. . . 
D 
. . . 
!

Most Natural 

Least Natural 

Fig. 4. Part of sample questionnaire used in evaluation study.

4.4 Study Protocol

We conducted a study in our laboratory with 12 participants (7 male, 5 female),
all of whom were enrolled students at WPI and were compensated $5 or lab
credit for their participation.

Each participant was first trained on the food preference questionnaire by
an experimenter until they were both satisfied that the participant understood
how to use the format.

The experimenter then explained that the participants were to evaluate the
naturalness and plausibility of the presented scenarios in the context of a com-
munity worker, Samantha, visiting an older adult, Katherine, in her home. Each
participant was then, in random order, given a randomly chosen version of the
questionnaire for the stranger, acquaintance and companion conditions. The par-
ticipant had as much time as they wanted to fill out each questionnaire.

4.5 Coding and Scoring

The raw data for each of the 12 participants is shown in Table 2. Each row of
the table corresponds to one participant. The first three columns show how they
filled in the questionnaire for each closeness condition.
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The raw data is presented as follows. The two scenarios on each questionnaire
generated by the social planner are coded as 1 and 2; the two scenarios generated
by the antisocial planner are coded as 3 and 4. (Remember that these scenarios
are randomly ordered on the questionnaire and the participants only see the
letters A, B, C and D.) Thus, for example, the questionnaire in Fig. 4 (which
corresponds to the grayed cell in Table 2) is coded as “1 / 2 4 / 3” because A
and B on this form were generated by the social planner and C and D by the
antisocial planner.

We scored the data by Co = 0 Co = 2 Co = 4 social anti

(stranger) (acquaintance) (companion) > anti > social

1 2 / 3 4 1 2 / 3 / 4 4 / 3 / 1 / 2 8 4

1 / 3 / 2 / 4 1 / 2 4 / 3 2 / 4 / 1 4 8 2

1 / 2 / 3 / 4 2 / 1 / 3 4 1 2 / 3 / 4 12 0

1 / 2 / 3 / 4 2 / 1 / 4 / 3 4 / 1 / 2 / 3 10 2

1 / 3 / 2 / 4 3 / 2 / 4 / 1 2 / 1 / 3 4 8 4

1 / 2 / 3 / 4 2 / 1 / 3 / 4 4 / 2 / 1 / 3 10 2

1 2 / 3 / 4 3 / 1 2 / 4 3 4 / 1 2 6 6

1 2 / 3 4 1 / 2 / 3 / 4 2 4 / 1 3 9 1

1 / 3 / 2 4 1 / 2 4 / 3 1 2 / 4 / 3 9 1

3 / 1 2 / 4 2 / 1 4 / 3 2 / 1 4 / 3 8 2

1 / 2 3 4 2 / 1 4 / 3 1 2 / 3 4 9 0

2 / 1 / 3 /4 2 / 1 3 / 4 4 / 2 / 3 / 1 8 3

Table 2. Raw tabulation of questionnaires.

counting the number of times
that a social scenario is pre-
ferred to an antisocial sce-
nario (a positive count) and
vice versa (a negative count).
These counts over all three
closeness conditions for each
participant are shown in the
last two columns of Table 2.
Table 3 summarizes the pos-
itive and negative counts and
the p-values for their differ-
ence for all participants over-
all and by closeness condition.

4.6 Discussion
According to our hypothesis, the pos- social anti

> anti > social p-value

Co = 0 (stranger) 40 5 7.88e−8

Co = 2 (acquaintance) 38 5 2.5e−7

Co = 4 (companion) 27 17 0.174

Overall 105 27 2.07e−11

Table 3. Comparison of evaluations.

itive counts should exceed the nega-
tive accounts. This is strongly sup-
ported overall and for both the stran-
ger and acquaintance conditions in-
dividually.

The fact that the result for the
companion condition was weak is understandable on both psychological and al-
gorithmic grounds. On the one hand, behavior that deviates from social norms
is more easily tolerated from those we are close to. On the other hand, the fact
that the antisocial planner ignored the minimum required closeness for availabil-
ity made less of a difference at the companion closeness level, because more of
the activities were available to the social planner anyways.

5 Conclusion

Informed by the relevant psychological and sociological models, we have imple-
mented a general-purpose algorithm for planning appropriate joint activities in
the context of a long-term human-computer relationship. This algorithm will
become a module in the virtual agent companion system we are building for
isolated older adults. However, we believe our algorithm could also be useful in
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many other types of intelligent interactive systems as they become more perva-
sive and persistent.

Before investing in a long-term in-situ study, we have completed a short lab-
oratory evaluation of the algorithm, which successfully demonstrated its plausi-
bility.

Finally, we want to point out that this work only scratches the surface of
computationally modeling long-term human-computer relationships. For exam-
ple, we have ignored the important effects of factors such as relative status,
gender and personality, to name just a few. There is a rich literature on all of
these topics that is waiting to be adapted into practical algorithms.
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