

Project Number. CR1-1001

AIPaint: A Sketch-Based Behavior Tree Authoring Tool

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Jesse Bassett

David Becroft

Adrián Mejía

April 28, 2011

Approved:

Professors Charles Rich and Candace L. Sidner, Major Advisors

Abstract

Videogame designers who make use of a behavior authoring tool to define the

behaviors of computer-controlled characters must typically split their attention between

the tool and the game. We have built a behavior authoring tool with an improved design

experience by merging these two contexts into one. This paper outlines the design and

development of a game-independent behavior tree authoring tool called AIPaint. Its user

interface allows the designer to build and edit behavior trees via a natural sketching

interface overlaid on the game world. The use of AIPaint to create behaviors in two

simple games is presented.

Acknowledgements

We thank Professor Jeffrey Rosenthal at the University of Toronto for his original

soccer game code and the authors at <http://www.bennychow.com/pacman.html> for the

Pac-Man code. We also thank Martin Field for his assistance with the Paleo sketch

recognition software. Special thanks to Damián Isla for the presentation at WPI which

inspired this project and for feedback throughout. Finally, we thank our advisors Chuck

Rich and Candy Sidner for sharing their wisdom, guidance, and chocolate.

Table of Contents

Abstract .. i

Acknowledgements ... ii
Table of Contents ... iii
List of Illustrations ... iv
1. Introduction ... 1
2. Design Goals ... 4

3. Proof of Concept ... 7
Pac-Man .. 8

Blinky .. 8
Clyde ... 8
Pinky ... 9
Inky ... 9

Soccer .. 10
4. Architecture... 11

Interface to the Game World ... 11
The Data Pipeline .. 11

$N: Recognizing Shapes from Strokes ... 14

Sketcho: From Shapes to Statements .. 14
Clarification Questions ... 15
Generalization ... 16

Directo: From Statements to Directions ... 17

Behavior Transformer: From Directions to Artificial Intelligence 18
Building the Behavior Tree ... 18
Merging Behavior Trees ... 19

The Active Path... 20
5. Design Debugging .. 22

Show Me What You’re Thinking ... 22
Poseability ... 23

6. Conclusions and Future Work .. 24

Appendix A: Interfaces to the Game World ... 26
References ... 31

List of Illustrations

Figure 1: Designer-programmer communication in behavior authoring 1

Figure 2: The user interfaces of many of today’s behavior authoring tools, such as

AI.implant (left) and SimBionic (right), are independent of the game world. 3

Figure 3: A theater director specifies the behavior of an actor in a play, just as a game

designer uses some tool to specify the behavior of a videogame character. We are

interested in the interface between the designer and the agent. .. 4

Figure 4: Pac-Man game running with the AIPaint tool. (a) A shape is drawn in natural

sketch input. (b) The sketch input is recognized as an arrow shape and cleaned up. (c) A

distance-conditional arrow with slider bar. (d) A temporary position variable relative to

Pac-Man’s position and orientation. (e) A “go twice as far” symbol connected to a

temporary position variable. ... 7

Figure 5: Soccer gameplay. ... 10

Figure 6: AIPaint data pipeline architecture. .. 13

Figure 7: The movement through the pipeline of data involved in building Blinky’s

behavior... 13

Figure 8: Transformation of Blinky’s behavior tree into Clyde’s. 18

Figure 9: Complex behavior tree, with the active path highlighted. 19

Figure 10: When “Show Me What You’re Thinking” is active, AIPaint draws the agent’s

current action using the appropriate statement. Here, the agent is shown to target the

corner of the maze when close to Pac-Man and to target Pac-Man when far away from

Pac-Man. ... 23

 1

1. Introduction

On a typical game development team, there is a designer and a programmer: the

designer is responsible for deciding how the computer-controlled characters in the game

should behave, while the programmer has the technical expertise necessary to implement

these behaviors. Development involves a communication loop between the designer and

the programmer – the programmer builds the AI, the designer revises the spec in response

to playtests, the programmer revises the code, and so on (see Figure 1). Frequent iteration

leads to more robust and polished AI, so nontechnical designers sometimes make use of

behavior authoring tools, which empower them to edit behaviors on their own.

Figure 1: Designer-programmer communication in behavior authoring

For example, BrainFrame (Fu and Houlette 2002) provides a game-independent agent

architecture and a graphical interface for editing finite state machines. Once BrainFrame

is integrated with a particular game, a nontechnical designer can create behaviors by

manipulating state machine diagrams, without having to write any code.

 2

Chris Hecker was the first to introduce the idea of a “Photoshop of AI” – an ideal

behavior authoring tool that could generate computationally efficient behavior

representations while still offering designers a high degree of aesthetic expressiveness

(Hecker 2008). Behavior authoring tools such as BehaviorShop (Heckel, Youngblood,

and Hale 2009) have been written with this goal in mind. BehaviorShop provides an

interface for creating agents based on subsumption architectures, which the tool’s authors

have shown to be an easier behavior representation than others for novices to understand.

As user-friendly as BehaviorShop and similar tools are, they still require designers to

split their attention between two contexts: (1) the tool, in which designers edit behaviors,

and (2) the game, in which designers observe and test behaviors (see Figure 2). We

believe that this configuration limits the aesthetic expressiveness afforded by these

authoring tools and that merging these two contexts into one improves the behavior

design experience. This paper outlines the design and development of a game-

independent behavior tree authoring tool called AIPaint. Its user interface allows the

designer to build and edit behavior trees via a natural sketching interface overlaid on the

game world, so that behavior authoring and testing may occur in the same environment.

 3

Figure 2: The user interfaces of many of today’s behavior authoring tools, such as AI.implant
1
 (left) and

SimBionic
2
 (right), are independent of the game world.

The reader might note that EA Games’ Madden NFL 2011 for the iPad includes a

form of in-game sketch-based behavior authoring. It allows the player to direct football

plays by drawing paths on the field using the iPad’s touch screen; the simulated football

players will follow these paths when the play begins. AIPaint is different in that it is a

generic tool designed to be applied to many games – not just football plays. Also, the

expressive power of AIPaint sketches is much higher than that of Madden’s route

sketches, because AIPaint allows the user to construct behaviors that involve making

decisions and performing arbitrary actions, rather than simply following paths.

1
 Image from <http://www.gilgameshcontrite.com/Computer_AI/images/79.jpg>

2
 Image from <http://www.simbionic.com/images/sbscreen_large.gif>

 4

2. Design Goals

In designing AIPaint, we used as our guiding metaphor the relationship between an

actor and a director rehearsing a play (see Figure 3). Here, the game designer is like a

director who needs to guide the behavior of group of actors, who represent agents. The

director can watch the actors execute their behaviors, then tell them to stop when he sees

something wrong. Next, he can issue some directions, and if the actor is confused by the

“input”, he may ask questions to clarify the director’s intent. When the director is

finished editing, he can resume the action. Finally, if the director wants to rehearse a

specific scene, he can rearrange the actors on the stage to set up the desired situation. It is

important to note that a director specifies the behavior of his actors by communicating

with them via an intelligent interface – not by reaching into their heads and manually

adjusting their brains.

Figure 3: A theater director specifies the behavior of an actor in a play, just as a game designer uses some

tool to specify the behavior of a videogame character. We are interested in the interface between the

designer and the agent.

 5

The metaphor of the game designer as a director led us to establish four design

criteria for AIPaint. Our first criterion is that a game designer should communicate

behavior specifications to AIPaint similarly to how he might communicate them to an AI

programmer in the absence of a behavior authoring tool. One might imagine the designer

often heading for a whiteboard or opening an image editor to draw diagrams, perhaps

overlaid on game screenshots, in the same way a football coach or commentator might

describe a play by marking up an image of the field with X’s and arrows. For this reason,

AIPaint presents a sketch-based interface, by which the designer may draw symbols –

lines, circles, and arrows – on the game world to describe behaviors. This kind of

interface lends itself very well to the use of a touch screen or tablet for input, but a mouse

suffices.

Our second design criterion is that AIPaint should present a clear connection between

the spatial and the symbolic. That is, the spatial relationships among game objects and the

symbolic information that defines how an AI interprets the game world should be visible

at the same time. In a behavior authoring tool in which the designer has to describe

behaviors without being able to see the game world, this connection is less clear. One

might compare the experience to that of painting a picture by typing in the coordinates of

the desired brush strokes, without being able to see the canvas. The purpose of AIPaint’s

interface design is to put this more difficult aspect of behavior authoring into its proper

context.

Our third design criterion is that AIPaint should produce behaviors in a simple,

widely used representation. Therefore, we chose to use behavior trees (Isla 2005) in our

 6

implementation. The architecture leaves room for the possibility of using other AI

representations, but this has not been explored by the authors.

Our final design criterion is that AIPaint should be a game-independent tool. A game

implementation that uses AIPaint for behavior authoring must provide code that

conforms to various interfaces, so that AIPaint can call upon the game to perform tasks

such as collision detection or screen-space to world-space conversion. The game provides

world state information to AIPaint, as well as agent objects that can execute primitive

actions according to an AI representation. The game-independent portion of AIPaint

contains the sketching interface and the code that builds an AI representation from the

sketch input. Certain aspects of the game-independent portion of AIPaint are available to

the game programmer for extension, and it is likely that each game that uses AIPaint will

extend the sketching language with game-specific symbols or otherwise customize the

tool.

 7

3. Proof of Concept

Here we demonstrate, from the designer’s point of view, the use of AIPaint for

behavior authoring in two simple games. The first example is a Pac-Man game (see

Figure 4), in which we recreate the original behavior of each of the ghosts. The ghost AI

in Pac-Man is all about moving through space relative to other game objects, and is

therefore a useful example for illustrating the way AIPaint’s user interface creates a

connection between spatial and symbolic information. The second example is a computer

soccer game, which despite its simplicity is different enough from Pac-Man to illuminate

the game-independence of AIPaint.

Figure 4: Pac-Man game running with the AIPaint tool. (a) A shape is drawn in natural sketch input. (b)

The sketch input is recognized as an arrow shape and cleaned up. (c) A distance-conditional arrow with

slider bar. (d) A temporary position variable relative to Pac-Man’s position and orientation. (e) A “go twice

as far” symbol connected to a temporary position variable.

 8

Pac-Man

Each ghost in Pac-Man – Inky, Blinky, Pinky, and Clyde – has a unique behavior. We

will examine the workings of AIPaint by demonstrating how a game designer would

build each of these four behaviors.

Blinky

The behavior designer begins by running a build of his game in which the AIPaint

data structures are initialized. Once the game is running, it will receive mouse and

keyboard input until the designer activates the AIPaint UI, which pauses the game. The

designer may then click on a ghost to edit its behavior.

Once the agent has been selected for editing, the designer can sketch on the game

world to build behaviors. As the designer sketches, shapes are automatically recognized

and cleaned up. Each of these shapes has a certain meaning when drawn on the game

world. For example, Figure 4a shows a Pac-Man screen on which an arrow has been

drawn from the red ghost, Blinky, to Pac-Man; Figure 4b shows this arrow after

AIPaint’s sketch recognizer has cleaned up the shape. The meaning of this arrow in the

context of this game is that Blinky should move toward Pac-Man.

In the original Pac-Man game, Blinky has a very simple behavior – he always moves

towards Pac-Man. In fact, this arrow from Blinky to Pac-Man is all that is needed to

represent his behavior. The designer can now copy Blinky’s behavior into another ghost,

Clyde, and edit the copy to build Clyde’s original behavior.

Clyde

Clyde, the orange ghost, has a behavior that involves choosing between two actions.

When he is farther than eight tiles away from Pac-Man, he targets Pac-Man’s position.

 9

When he comes within eight tiles of Pac-Man, he instead targets a position just outside

one corner of the maze. We will need to compare the distance between Clyde and Pac-

Man to some threshold value – eight tiles – and use the result to select one of the actions.

This shape takes the form of an arrow from Clyde to Pac-Man with a hash mark in the

middle that the designer can drag back and forth to specify the threshold value (see

Figure 4c). To specify Clyde’s complete behavior, the designer draws this decision

arrow, along with an arrow from Clyde to Pac-Man and an arrow from Clyde to the

corner of the maze.

Pinky

Pinky’s behavior is to move to the space four units ahead of Pac-Man. The designer

first draws a circle around the space four units ahead of Pac-Man and a line connecting

the circle to Pac-Man (see Figure 4d). Now, the circle specifies a position relative to Pac-

Man’s position and orientation, and other shapes can be connected to this circle. To tell

Pinky to move to this space, the designer draws a movement arrow from Pinky to the

circle.

Inky

Inky’s behavior is the most complex of the four ghosts. He considers a ray from

Blinky to the space two units ahead of Pac-Man, doubles the length of this ray, and

targets the position at the end of this new ray. To represent this behavior, the designer

must make use of a special shape that means “go to the space twice the distance from

point A to point B”. As with Pinky, the designer first draws a circle and line to specify

the space two units ahead of Pac-Man. Then, he draws this new shape, which looks like

three parallel lines, from Blinky to the circle (see Figure 4e).

 10

Soccer

We integrated AIPaint with a simple computer soccer game as well (see Figure 5) to

demonstrate the game-independence of AIPaint. We implemented a blocking behavior, in

which a player agent moves to the member of the opposite team who last touched the

ball. The designer needs some help from the game programmer to set up this behavior.

AIPaint needs to know that when the designer draws an arrow to the player who last

touched the ball, he might intend to make a statement about whoever last touched the

ball, rather than that specific player. The game programmer must tell AIPaint how to

make this generalization. Then the designer can specify the desired behavior by drawing

a movement arrow to the member of the opposite team who last touched the ball, and

AIPaint will make the appropriate generalization.

Figure 5: Soccer gameplay.

 11

4. Architecture

The AIPaint software, which the authors implemented in Java, relies upon the game

code to implement certain interfaces with game-specific behavior. Note that both the

game designer and the game programmer are users of the tool, since the programmer

needs to write some code to connect the game to AIPaint.

Interface to the Game World

AIPaint achieves game independence by communicating with the game world via

Java interfaces. A game connects to AIPaint by implementing these interfaces and

initializing certain data structures. See Appendix A for a full listing of these interfaces.

Primarily, the game is responsible for providing AIPaint with world state information,

in the form of a collection of world features mapped to values. The game will typically

obtain feature-value pairs by examining game objects, each of which must announce the

feature that corresponds to its state and the current value of that feature. Game objects

may also announce their orientation, if it might be meaningful to the game designer.

Behavior tree decision nodes then make decisions during gameplay based on attribute

objects, which represent computations on the values of world features. For instance, a

particular attribute, when evaluated, might look up the values of the world features that

correspond to two game objects’ positions and compute the distance between them.

The Data Pipeline

AIPaint’s data pipeline, illustrated in Figure 6, transforms sketch input into a form

that can be used to build or modify a behavior tree. Using arrows drawn between game

objects to shuffle decision nodes into their intended positions is a fairly large conceptual

 12

leap, so we break the process down into several more tightly scoped steps. Sketch input is

first recognized and cleaned up into shapes, which are then mapped to statements, the set

of which make up a language we call Sketcho. Statements are then translated into

directions, which make up a language called Directo. Generalization and clarification

questions to the designer support the process by bringing in contextual information.

Finally, directions are used to effect changes to the behavior tree. Figure 7 illustrates the

movement through the pipeline of examples of data involved in building Blinky’s

behavior.

 13

Figure 6: AIPaint data pipeline architecture.

Figure 7: The movement through the pipeline of data involved in building Blinky’s behavior.

 14

$N: Recognizing Shapes from Strokes

The first step is to recognize the shapes sketched by the designer. As the designer

drags a mouse cursor or touch stylus across the screen, the input points are recorded and

grouped into strokes. These are passed to a Java implementation of the $N multistroke

recognition algorithm (Anthony and Wobbrock 2010), which returns a list of possible

shapes paired with confidence values. To perform the recognition, the $N algorithm

depends on a data set that defines each shape to be recognized; a game programmer can

extend the Sketcho language by providing new shape definitions. The AIPaint

implementation of the $N algorithm also returns the locations of control points in

recognized shapes, which are specified as part of each shape’s definition. Control points

simply denote the points on a shape that might be meaningful, such as the head and tail of

an arrow. Knowing the locations of the control points of a recognized shape makes it

possible to perform shape clean-up.

Sketcho: From Shapes to Statements

When AIPaint decides that the input relatively unambiguously specifies a particular

shape, it replaces the input strokes with the cleaned-up shape and requests that the game

provide it with an instance of the statement object associated with that shape. This

process is labeled as “Sketcho” in Figure 6; shapes are consumed and a syntax tree of

statements is sent to the next stage of the pipeline. See Table 1 for a list of all statement

types implemented by the authors for use in the Pac-Man game.

Statement objects encode the meanings in the designer’s input. For example, the

arrow in Figure 4b is a move-to statement, encoding the meaning that the ghost is meant

to move to Pac-Man. Statement objects produce their meanings by translating themselves

 15

into sequences of directions, which modify the behavior tree – this move-to statement

produces directions that add a move-to-pac-man action node to the behavior tree.

Some statements are not translated into directions that modify the behavior tree, but still

provide information to other statements in the sketch; these statements are called

intermediate variable statements. For example, specifying Inky and Pinky’s behaviors

required the use of a statement that defines a space some distance ahead of Pac-Man. This

statement says nothing about the behavior tree by itself, but the designer can draw a

move-to statement that points to it. Together, these two statements produce an action

node in the behavior tree telling the agent to move to the space x units ahead of Pac-Man.

Table 1: Types of statements implemented by the authors for use with the Pac-Man game. Game

independence refers to whether the statement is defined in AIPaint or in the specific game implementation.

Statement Type Graphical Representation Game Independent?

PacManMoveToStatement See Figure 4b No

DistanceConditionalStatement See Figure 4c Yes

SketchoIntermediateVariable See Figure 4d Yes

PacManGoTwiceAsFarStatement See Figure 4e No

Clarification Questions

If any object finds that it requires additional input from the designer to complete some

operation, it can call an AIPaint function to display a multiple-choice question and obtain

the designer’s response. For example, if the designer’s statement input produces

directions specifying that a decision node in the behavior tree should be removed, what

should happen to the decision’s child nodes might be ambiguous. Clarification questions

are a way to disambiguate user input in such situations. The contribution of this

 16

mechanism to the Sketcho and Directo processes is noted in Figure 6 as “Questions” and

“Clarification”.

Generalization

What happens if a designer wants to make a statement about a group of game objects,

instead of just one? Perhaps the designer wants his agent to make a decision about an

object that is selected dynamically each moment. As mentioned previously, the Soccer

designer might want a player to move to the member of the opposite team who last

touched the ball. The particular player specified by this statement changes often during

gameplay.

To accomplish this effect, the game programmer provides AIPaint with

generalizations that make sense for his game, in the form of game-specific attribute

objects that select a “special” game object from a group. In this case, the programmer

might specify a last-player-who-had-the-ball attribute that, when evaluated on a world

state and a group of players, returns the member of the group who last touched the ball.

Note that the game designer and game programmer need to work together to decide

which generalizations will be useful for their agents to make.

When the designer draws a statement and attaches it to a game object, AIPaint

automatically evaluates whether this object is special in some way – for instance, if this

object is the player who last had the ball. If so, the statement is attached not to the

particular game object, but to an attribute that produces a game object when evaluated at

runtime. This is how game context factors into the Sketcho module in Figure 6.

 17

Directo: From Statements to Directions

Once the designer has provided his sketch input, AIPaint collects the statements into a

syntax tree and traverses it, having each statement translate itself into a list of directions

that represent the statement’s intent. This step is the “Directo” process in Figure 6.

Directions describe modifications to a behavior tree, such as the addition or removal of

decision or action nodes. See Table 2 for a list of all direction types implemented by the

authors.

Directions are then passed to a behavior transformation module and applied to the

behavior tree. Each direction operates on the behavior tree within the context of the

existing behavior tree and the world state in which the direction was generated. Once the

old behavior tree has been modified and the designer has unpaused the game, the agent

will begin behaving according to the new behavior tree.

Figure 8 illustrates the transformation of Blinky’s behavior tree into Clyde’s. Blinky’s

tree contains only an action node, and the behavior transformer replaces it with a decision

node that tests Clyde’s distance to Pac-Man against a threshold of eight units.

Table 2: Direction types implemented by the authors.

Direction Type Effect

AttachChildDirection Adds a new node in the next available location

AddNodeDirection Inserts a node at a particular location

RemoveNodeDirection Removes a node from a particular location

 18

Figure 8: Transformation of Blinky’s behavior tree into Clyde’s.

Behavior Transformer: From Directions to Artificial Intelligence

The Behavior Transformer is responsible for applying directions to the existing

behavior representation and returning the modified representation. The Behavior

Transformer executes the directions with as little additional input from the designer as

possible.

Building the Behavior Tree

The Behavior Transformer modifies the existing behavior tree by using the input list

of directions to assemble a separate behavior tree. Then, the problem becomes one of

merging two existing behavior trees, rather than modifying nodes or branches in a single

behavior tree.

 19

Merging Behavior Trees

Figure 9: Complex behavior tree, with the active path highlighted.

Merging two independent behavior trees according to the intentions of the designer

can be complicated. If we let the incoming tree be denoted by I, and the existing tree be

denoted by E, the merge between the two is only trivial if the following two conditions

are met:

1. There is one and only one node N contained in E that considers the same attribute

as the root node of I.

2. That none of the children of N are branched over the same interval as any of the

children of the root node of I.

If these conditions are not met, I will have multiple possible places of insertion, and

this means that the behavior tree can be inserted in a place not intended by the designer.

Without any clear heuristic to determine the better location, the placement is arbitrary. If

 20

condition 2 is violated, the insertion of the new behavior tree could overwrite an existing

subtree, losing data and possibly desired behavior.

The Active Path

To better the odds of meeting condition 1, we can reduce the tree by considering extra

information that is passed along with the list of directions. The current world state is

packaged with every set of directions, so we can use this to determine the currently active

path of decision nodes through the tree (see Figure 9). This active path represents the

context of the designer’s input. For instance, if the incoming tree makes a decision on the

attribute “IF ThisGhost DISTANCE TO PacMan”, there are two places in the tree in

Figure 9 that also make decisions on that attribute. The decision node that the designer

most likely intends to modify is the one in the active path.

Thus, the first place to look in any merge is along this active path. If no decision node

is found with a matching attribute, then the behavior transformer looks to the nodes

adjacent to the active node – the action node at the end of the active path. Adjacent nodes

are found by traversing the active path, and changing the world state to make neighboring

nodes active. The heuristic importance of an adjacent node relative to the active node is

calculated in two steps. First the distance from the adjacent node to the active node is

calculated, and then the path from the adjacent node to the active node is determined. For

that path, the total number of deviations from the active path is calculated. By adding the

total number of deviations and the distance to the active node, it is possible to create a

heuristic to determine the most relevant paths through the tree according to the current

context. Using the adjacent nodes listed in Figure 9, the score of node D would be a total

of 7. It takes five steps to reach that node, and it involves two deviations from the current

 21

world state. The final sorted order would be [F(2), E(3), A(4), B(6), C(6), D(7)], with the

score of the node indicated inside the parentheses.

If there exists an adjacent node on which the incoming tree can merge, the Behavior

Transformer will ask for clarification that the adjacent path is the intended context. If, in

the tree in Figure 9, the designer meant to pose Pac-Man closer to the power pellets, the

active path the designer may have intended would have been node C. If the designer

accepts, the merge will take place there; otherwise, the search will continue to the rest of

the tree.

If the merging algorithm goes through the whole tree without any success, it can try

to reverse the merging process and merge the existing tree into the incoming tree. This is

not a decision the algorithm is qualified to make on its own, and it must ask for

clarification from the designer. The designer is presented with a dialog asking if he would

like to try the reverse merge. If the designer accepts, the merging algorithm reverses the

roles of the existing and incoming tree and tries to merge again.

If the designer declines or if the reverse merge fails, the Behavior Transformer can

ask for more clarification on where to conduct the merging. It will ask about the priority

level of the input decision, which indicates how far up the active path the Behavior

Transformer should try to place the decision. If the designer decides to see more options,

it will suggest places along the adjacent paths instead. This way the node can be inserted

into the tree at the exact place where the designer desires it. This dialog takes place in

natural language, so the attributes must have a method to describe themselves.

 22

5. Design Debugging

Having built his agents’ behaviors, the designer might make use of two important

AIPaint features to debug his behavior designs: “Show Me What You’re Thinking” and

poseability. At this stage, the designer has finished drawing sketch input to build

behaviors, and he simply wants to test that his agents behave as intended.

Show Me What You’re Thinking

First, to pick up our example from earlier, assume that the designer wants to check

that Clyde does indeed target Pac-Man when they are more than eight tiles away from

each other. To verify this, the designer can ask Clyde to show him what he is thinking

during gameplay (see Figure 10). Clyde will draw his current action on the screen as a

statement – in this case, a move-to arrow from Clyde to Pac-Man. Note that this arrow is

not drawn by the designer, but rather generated and rendered by AIPaint as a view on

Clyde’s behavior tree. The designer may then resume playing the game and observe how

Clyde’s current action changes with the situation: when Pac-Man moves, does the arrow

target Pac-Man’s new position? When Clyde comes within eight tiles of Pac-Man, does

the arrow now point to the corner of the maze?

This feature involves pulling data through the pipeline in reverse. AIPaint displays

the current action node by asking the game to produce a statement that expresses this

particular action. For instance, a move-to statement attached to Pac-Man would express

the action move-to-pac-man. The statement is then displayed to show the agent’s current

action.

 23

Figure 10: When “Show Me What You’re Thinking” is active, AIPaint draws the agent’s current action

using the appropriate statement. Here, the agent is shown to target the corner of the maze when close to

Pac-Man and to target Pac-Man when far away from Pac-Man.

Poseability

If the designer wants to test his agent’s behavior in a very particular scenario that

would take some time to bring about through normal gameplay, he might use poseability.

Every game object that may be considered by agents’ behavior trees must also allow the

designer to manipulate its state at runtime. For example, the game object that represents

Pac-Man makes it possible for the designer to set its position by clicking and dragging it

to the desired location. Since every game object that an agent might consider must

necessarily also be poseable in this manner, the designer is guaranteed the ability to

configure any game scenario he wishes by simply dragging game objects about; he does

not have to spend time trying to arrange unusual edge cases through gameplay. In our

example, the designer can pose Clyde and Pac-Man closer together or farther apart and

check that Clyde behaves as expected in each case.

 24

6. Conclusions and Future Work

AIPaint could be made into a more powerful behavior editor with a few more

features. First, agents might want to make decisions based on pieces of hidden world state

that don’t have graphical representations convenient for posing – for instance, whether

Pac-Man is chowing down on a power pellet. AIPaint could enable the game to provide

graphical representations of normally hidden state features that could be displayed to the

designer for posing during AIPaint Pause.

Second, the choice of where to merge new decision nodes into an existing behavior

tree has a significant impact on the resulting behavior, but AIPaint does not present the

designer with a very powerful interface for making this choice. One way to make the

interface more powerful without requiring the designer to edit the behavior tree directly

might be to enable AIPaint to pose the scene while asking clarifying questions about what

to do in particular scenarios, narrowing down the desired location of the new decision

node.

Third, the statements displayed during “Show Me What You’re Thinking” are

presently immutable. Allowing the designer to edit them – for instance, by changing the

target of a move-to statement – would be a natural and powerful extension of the user

interface. This feature could also be extended to enable the designer to explore the

decisions the agent is making as well as the actions it is taking.

Finally, designers are presently offered no interface for overriding AIPaint’s eager

generalizations. Designers should be notified when generalizations occur and should be

 25

enabled to opt out of them, as well as to specify that generalizations should be made

when AIPaint would not do so automatically.

AIPaint might also be modified to support the construction of behavior

representations other than behavior trees, such as planning systems, state machines, or

subsumption architectures. The existing software architecture leaves room for other

representations, but none have been implemented by the authors. A new behavior

representation would require a new Directo language to modify it and might also lend

itself to different sorts of sketches.

User testing would likely be of great benefit to AIPaint. It would be useful to gather

data on whether AIPaint is any easier to use than other behavior authoring tools, whether

Sketcho statements are easy to read, and what sorts of diagrams designers typically draw

to express behaviors.

The AIPaint Java code and a video of the software are available at

<http://www.cs.wpi.edu/~rich/aipaint>.

 26

Appendix A: Interfaces to the Game World

/**

 * This is an interface for the main handle that AI Paint has on

 * the game. It should be implemented by one class that AIPaint

 * will hold on to for the remainder of its execution.

 */

public interface Game {

 /**

 * Return poseable at the given position.

 * @param worldSpacePoint The position to test for a poseable

 * @return Poseable if it is in that position, null if none

 */

 public Poseable getPoseableAt(Vector2 worldSpacePoint);

 /**

 * Return all poseables that intersect with a circle

 * centered at the given point with the given radius

 * @param worldSpaceCenter The world space point representing

 * the center

 * @param worldSpaceRadius The world space radius for the

 * circle

 * @return List of poseables that collide with given circle

 */

 public List<Poseable> getPoseablesCollidingWith

 (Vector2 worldSpaceCenter, float worldSpaceRadius);

 /**

 * Update the game model.

 * @param gameTime The elapsed time since the last call of

 * tick

 */

 public void tick(int gameTime);

 /**

 * Draw the game

 * @param gameTime The elapsed time since the last call of

 * draw

 */

 public void draw(int gameTime);

 /**

 * Translate from screen space to world space

 * @param screenSpacePoint The point in screenspace to

 * translate

 * @return A vector2 representing the world space point

 */

 public Vector2 getWorldSpacePoint(Vector2 screenSpacePoint);

 /**

 * Translate from world space to screen space

 * @param worldSpacePoint The point in worldspace to

 * translate

 27

 * @return A vector2 representing the screenspace point

 */

 public Vector2 getScreenSpacePoint(Vector2 worldSpacePoint);

 /**

 * Function called at AIPaint initialization,

 * before any calls to tick or draw are made.

 */

 public void aiPaintInit();

 /**

 * Return AIAgent at the given position

 * @param worldSpacePoint The position to test for an AIAgent

 * @return AIAgent if it is in that position, null if none

 */

 public AIAgent getAIAgentAt(Vector2 worldSpacePoint);

 /**

 * Return MouseListener this game will use

 * @return MouseListener this game will use

 */

 public MouseListener getMouseListener();

 /**

 * Return MouseMotionListener this game will use

 * @return MouseMotionListener this game will use

 */

 public MouseMotionListener getMouseMotionListener();

 /**

 * Return KeyListener this game will use

 * @return KeyListener this game will use

 */

 public KeyListener getKeyboardListener();

 /**

 * Return the WorldState representing the current state of

 * the game model

 * @return WorldState object representing the current state

 * of the game model

 */

 public WorldState getCurrentWorldState();

}

/**

 * Represents an object on whose state an AIPaint agent may make

 * decisions. This object's state may be posed during design time

 * using the AIPaint UI.

 */

public interface Poseable {

 /**

 * Change the position of this poseable to the given position

 * @param worldSpacePoint The new position the poseable will

 * have

 */

 public void moveTo(Vector2 worldSpacePoint);

 28

 /**

 * Gets the current worldspace position of the poseable

 * @return The current worldspace position of the poseable

 */

 public Vector2 getPosition();

 /**

 * Gets the WorldFeature that maps to this

 * Poseable's state from the WorldState

 * @return WorldFeature that maps to this Poseable's state

 */

 public WorldFeature getFeature();

 /**

 * Gets the ValueType that represents this

 * Posable's state, mapped from the getFeature() method

 * @param <ValueType>

 * @return ValueType that represents this Poseable's state

 */

 public <ValueType extends Value> ValueType getFeatureValue();

 /**

 * Get the groups this poseable belongs to, for purposes of

 * generalization

 * @return Iterable that gives all groups this poseable

 * belongs to

 */

 public Iterable<Group> getGroups();

 /**

 * Get a vector2 representing the orientation or heading in

 * which this poseable is traveling

 * @return Vector2 representing the orientation of the

 * poseable

 */

 public Vector2 getOrientation();

 /**

 * Gets the WorldFeature that maps to this

 * Poseable's orientation from the WorldState

 * @return WorldFeature that maps to this Poseable's

 * orientation

 */

 public WorldFeature getOrientationFeature();

 /**

 * Gets the ValueType that represents this Poseable's

 * orientation, mapped from the getOrientationFeature() method

 * @param <ValueType>

 * @return ValueType that represents this Poseable's

 * orientation

 */

 public <ValueType extends Value> ValueType

 getOrientationFeatureValue();

}

 29

/**

 * Represents a computation on a WorldState.

 */

public interface Attribute {

 /**

 * Evaluate the computation on the current WorldState

 * @param worldState The current worldState

 * @return A value representing the Attribute computation

 */

 Value evaluate(WorldState worldState);

}

/**

 * Provides Attributes capable of generalizing over particular

 * Groups.

 */

public interface HeuristicFactory {

 /**

 * Returns an Iterable containing all Attributes that are

 * capable of

 * generalizing the given Group.

 * @param group

 * @return

 */

 public Iterable<Attribute>

 getGeneralizingAttributes(Group group);

}

/**

 * Defines a factory for constructing SketchoStatement objects.

 */

public interface StatementFactory {

 /**

 * Returns an instance of the SketchoStatement with the given

 * name.

 * @param statement

 * @return

 */

 public SketchoStatement getStatement(String statementName);

 /**

 * Returns an instance of the SketchoStatement that produces

 * the given Action.

 * @param actionProduced

 * @return

 */

 public SketchoStatement getStatement(Action actionProduced);

 /**

 * Returns an instance of the SketchoStatement that produces

 * a decision on the given Attribute.

 * @param attributeProduced

 * @return

 */

 public SketchoStatement

 getStatement(Attribute attributeProduced);

 30

}

/**

 * Represents an agent for whom AIPaint may be used to build

 * behavior.

 */

public interface AIAgent extends Poseable {

 /**

 * Returns the controller that stores this agent's behavior.

 * @return

 */

 public AIController getAIController();

}

/**

 * Represents a low-level action that an agent may execute.

 */

public interface Action

{

 /**

 * Executes this action on the given agent.

 * @param agent

 * @return

 */

 public Action execute(AIAgent agent);

}

 31

References

Anthony, L. and Wobbrock, J. O. 2010. A Lightweight Multistroke Recognizer for User

Interface Prototypes. In Proceedings of Graphics Interface 2010, 245-252. Toronto,

Ontario: Canadian Information Processing Society.

Fu, D. and Houlette, R. 2002. Putting AI in Entertainment: An AI Authoring Tool for

Simulation and Games. IEEE Intelligent Systems vol. 17, no. 4, pp. 81-84.

Heckel, F. W. P.; Youngblood, G. M.; and Hale, D. H. 2009. BehaviorShop: An Intuitive

Interface for Interactive Character Design. In Proceedings of the Fifth Artificial

Intelligence for Interactive Digital Entertainment Conference, 46-51.

Hecker, C. 2008. Structure vs. Style. Game Developers Conference.

http://chrishecker.com/Structure_vs_Style (accessed 2011).

Isla, D. 2005. Handling Complexity in the Halo 2 AI. Game Developers Conference.

http://www.gamasutra.com/gdc2005/ features/20050311/isla_01.shtml (accessed

2011).

