Transmission Errors

Error Detection and Correction

Transmission Errors

- Transmission errors are caused by:
 - thermal noise {Shannon}
 - impulse noise (e..g, arcing relays)
 - signal distortion during transmission (attenuation)
 - crosstalk
 - voice amplitude signal compression (companding)
 - quantization noise (PCM)
 - jitter (variations in signal timings)
 - receiver and transmitter out of synch

Error Detection and Correction

- *error detection* :: adding enough "extra" bits to deduce that there is an error but not enough bits to correct the error.
- If only error detection is employed in a network transmission
 retransmission is necessary to recover the frame (data link layer) or the packet (network layer).

- At the data link layer, this is referred to as ARQ (Automatic Repeat reQuest).

Error Detection and Correction

error correction :: requires enough additional (redundant) bits to deduce what the correct bits must have been.

Examples

- Hamming Codes
- FEC = Forward Error Correction *found in MPEG-4*.

Hamming Codes

codeword :: a legal dataword consisting of *m* data bits and *r* redundant bits.

- Error detection involves determining if the received message matches one of the legal codewords.
- Hamming distance :: the number of bit positions in which two bit patterns differ.
- Starting with a complete list of legal codewords, we need to find the two codewords whose Hamming distance is the <u>smallest</u>. This determines the Hamming distance of the code.

Error-Correcting Codes

Char.	ASCII	Check bits
н	1001000	j ÓÓ110010000
а	1100001	10111001001
m	1101101	11101010101
m	1101101	11101010101
i	1101001	01101011001
n	1101110	01101010110
g	1100111	01111001111
	0100000	10011000000
С	1100011	11111000011
0	1101111	10101011111
d	1100100	11111001100
е	1100101	00111000101
		Order of bit transmission

Figure 3-7. Use of a Hamming code to correct burst errors.

(b) A code with good distance properties

 $\mathbf{x} = \mathbf{codewords}$ $\mathbf{o} = \mathbf{non-codewords}$

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 3.51

Hamming Codes

- To detect *d* single bit errors, you need a *d*+1 code distance.
- To correct *d* single bit errors, you need a 2*d*+1 code distance.
- ➔In general, the price for redundant bits is <u>too expensive</u> to do error correction for network messages.
- \rightarrow use error detection and ARQ.

Error Detection

Remember – errors in network transmissions are <u>bursty.</u>

- → *The percentage of damage due to errors is lower.*
- → It is harder to detect and correct network errors.
- Linear codes
 - Single parity check code :: take *k* information bits and appends a single **check bit** to form a codeword.
 - Two-dimensional parity checks
- IP Checksum
- Polynomial Codes

Example: CRC (Cyclic Redundancy Checking)

General Error-Detection System

Copyright ©2000 The McGraw Hill Companies

WPI

Leon-Garcia & Widjaja: Communication Networks

Error-Detection System using Check Bits

Networks: Transmission Errors

Two-dimensional parity check code

Last column consists of check bits for each row

Bottom row consists of check bit for each column

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 3.52

Networks: Transmission Errors


```
unsigned short cksum(unsigned short *addr, int count)
       /*Compute Internet Checksum for "count" bytes
        * beginning at location "addr".
       * /
   register long sum = 0;
   while ( count > 1 ) {
       /* This is the inner loop*/
            sum += *addr++;
            count -=2;
       }
       /* Add left-over byte, if any */
   if (count > 0)
       sum += *addr;
       /* Fold 32-bit sum to 16 bits */
   while (sum >>16)
       sum = (sum & Oxffff) + (sum >> 16) ;
   return ~sum;
}
```

Copyright ©2000 The McGraw Hill Companies

Networks: Transmission Errors

Polynomial Codes [LG&W pp. 161-167]

- Used extensively.
- Implemented using <u>shift-register circuits</u> for speed advantages.
- Also called CRC (cyclic redundancy checking) because these codes generate check bits.
- Polynomial codes :: bit strings are treated as representations of polynomials with ONLY binary coefficients (0's and 1's).

Polynomial Codes

• The *k bits* of a message are regarded as the coefficient list for an information polynomial of degree *k-1*.

$$\mathbf{I} :: i(x) = i_{k-1} x^{k-1} + i_{k-2} x^{k-2} + \dots + i_{1} x + i_{0}$$

Example

1011000

$$i(x) = x^6 + x^4 + x^3$$

Notation

- Encoding process takes i(x) produces a codeword polynomial b(x) that contains information bits and additional check bits that satisfy a pattern.
- Let the codeword have *n* bits with *k* information bits and *n*-*k* check bits.
- We need a *generator polynomial* of degree *n*-*k* of the form

G = g(x) =
$$x^{n-k} + g + g + x^{n-k-1} + \dots + g + g + 1$$

Note – the first and last coefficient are always 1.

Polynomial Arithmetic

Addition:
$$(x^7 + x^6 + 1) + (x^6 + x^5) = x^7 + (1+1)x^6 + x^5 + 1$$

= $x^7 + x^5 + 1$

Multiplication: $(x+1)(x^2 + x + 1) = x^3 + x^2 + x + x^2 + x + 1 = x^3 + 1$

Networks: Transmission Errors

CRC Algorithm

Steps:

1) Multiply i(x) by x^{n-k} (puts zeros in (n-k) low order positions)

2) Divide
$$x^{n-k} i(x)$$
 by $g(x)$ quotient remainder
 $x^{n-k}i(x) = g(x) q(x) + r(x)$

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 3.56

Information: (1,1,0,0) $\implies i(x) = x^3 + x^2$ Generator polynomial: $g(x) = x^3 + x + 1$ Encoding: $x^3i(x) = x^6 + x^5$

$x^3 + x^2 + x$	1110
$x^{3} + x + 1$) $x^{6} + x^{5}$ $x^{6} + x^{4} + x^{3}$	1011)1100000 1011
$x^5 + x^4 + x^3$	1110
$x^5 + x^3 + x^2$	1011
$x^{4} + x^{2}$	1010
$x^4 + x^2 + x$	1011
Transmitted codeword: $b(x) = x^{6} + x^{5} + x$ $\implies \underline{b} = (1,1,0,0,0,1,0)$	010

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 3.57

Networks: Transmission Errors

Frame : 1101011011

Generator: 10011

Message after 4 zero bits are appended: 11010110110000

Figure 3-8. Calculation of the polynomial code checksum.

Transmitted frame: 11010110111110

Generator Polynomial Properties for Detecting Errors

1. Single bit errors: $e(x) = x^i$ $0 \le i \le n-1$

If g(x) has more than one term, it cannot divide e(x)

2. Double bit errors: $e(x) = x^{i} + x^{j}$ $0 \le i < j \le n-1$ $= x^{i} (1 + x^{j-i})$

If g(x) is primitive, it will not divide $(1 + x^{j-i})$ for $j-i \le 2^{n-k}-1$

3. Odd number of bit errors: e(1) = 1 If number of errors is odd.

If g(x) has (x+1) as a factor, then g(1) = 0 and all codewords have an even number of 1s.

Copyright ©2000 The McGraw Hill Companies	Leon-Garcia & Widjaja: Communication Networks	Figure 3.60
WPI	Networks: Transmission Errors	22

Generator Polynomial Properties for Detecting Errors

$$e(x) = x^i d(x)$$
 where $\deg(d(x)) = L-1$
 $g(x)$ has degree $n-k$;
 $g(x)$ cannot divide $d(x)$ if $\deg(g(x)) > \deg(d(x))$

• L = (n-k) or less: all errors will be detected

• L > (n-k+1): fraction of bursts which are undetectable = $1/2^{n-k}$

Leon-Garcia & Widjaja: Communication Networks

Copyright ©2000 The McGraw Hill Companies

Basic ARQ with CRC

