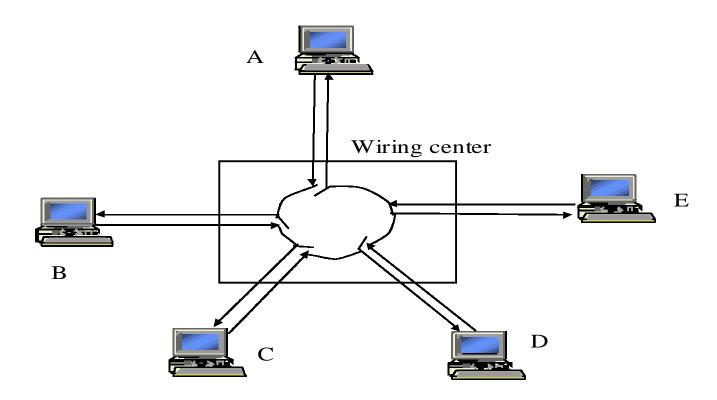
Token Ring and Fiber Distributed Data Interface (FDDI)

IEEE 802.5 Token Ring

• Proposed in 1969 and initially referred to as a *Newhall ring*.

Token ring: a number of stations connected by transmission links in a ring topology. Information flows *in one direction along the ring* from source to destination and back to source.

Medium access control is provided by a small frame, the token, that circulates around the ring when all stations are idle. *Only the station possessing the token is allowed to transmit at any given time*.



Token Ring Operation

- When a station wishes to transmit, it must wait for token to pass by and *seize the token*.
 - One approach: change one bit in token which transforms it into a "start-of-frame sequence" and appends frame for transmission.
 - Second approach: station claims token by removing it from the ring.
- Frame circles the ring and is removed by the transmitting station.
- Each station interrogates passing frame, if destined for station, it copies the frame into local buffer. {Normally, there is a one bit delay as the frame passes through a station.}

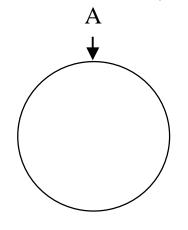
Token Ring Network with star topology

Copyright ©2000 The McGraw Hill Companies

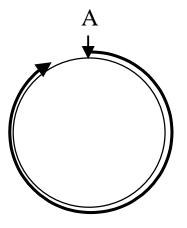
Leon-Garcia & Widjaja: Communication Networks

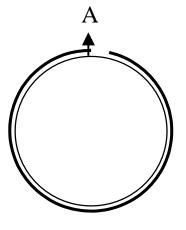
Figure 6.58

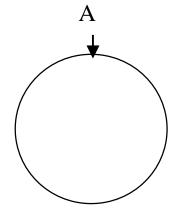
Re-inserting token on the ring


Choices:

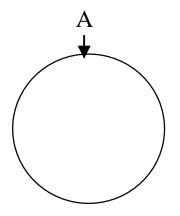
- 1. After station has completed transmission of the frame.
- 2. After leading edge of transmitted frame has returned to the sending station.


The essential issue is whether more than one frame is allowed on the ring at the same time.

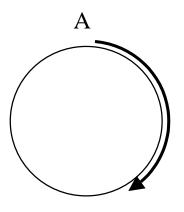

(a) Low Latency Ring


t=0, A begins frame

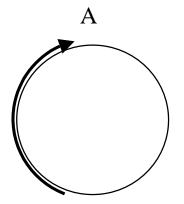
t=90, return of first bit

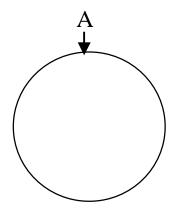


t=400, transmit last bit

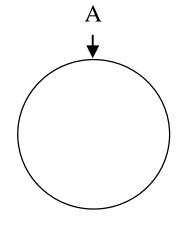


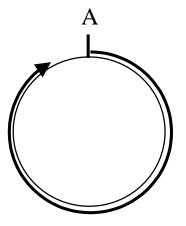
t=490, reinsert token

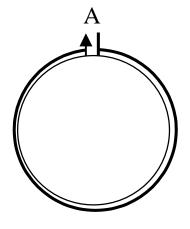

(b) High Latency Ring

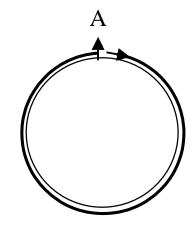

t=0, A begins frame

t=400, last bit of frame enters ring

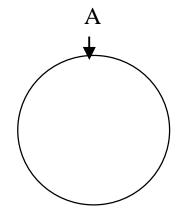

t=840, return of first bit


t=1240, reinsert token

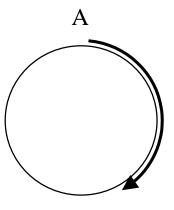

(a) Low Latency Ring


t=0, A begins frame

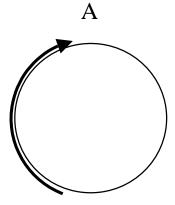
t=90, return of first bit

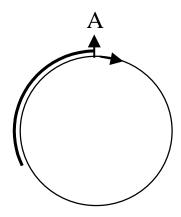


t=210, return of header



t=400, last bit enters ring, reinsert token


(b) High Latency Ring


t=0, A begins frame

t=400, transmit last bit

t=840, arrival first frame bit

t=960, reinsert token

IEEE 802.5 Token Ring

- 4 and 16 Mbps using twisted-pair cabling with differential Manchester line encoding.
- Maximum number of stations is 250.
- Waits for last byte of frame to arrive before reinserting token on ring *{new token after received}*.
- 8 priority levels provided via two 3-bit fields (priority and reservation) in data and token frames.
- Permits 16-bit and 48-bit addresses (same as 802.3).

Token Ring

- Under light load delay is added due to waiting for the token *{on average delay is one half ring propagation time}.*
- Under heavy load ring is "round-robin".
 - Performance is fairer and better than Ethernet!!
- The ring must be long enough to hold the complete token.
- Advantages fair access
- Disadvantages ring is single point of failure, ring maintenance is complex due to token malfunctions.

Token Maintenance Issues

What can go wrong?

- Loss of token (no token circulating)
- Duplication of token (forgeries or mistakes)
- The need to designate one station as the *active ring monitor*.
- Persistently circulating frame
- Deal with active monitor going down.

IEEE 802.5 Token and data frame structure

Token Frame Format

SD AC ED

Data Frame Format

1	1	. 1	2 or 6	2 or 6		4	1	1
SD	AC	FC	Destination	Source	Information	FCS	ED	FS
SD			Address	Address				

Starting delimiter

J K 0 J K 0 0 0

J, K non-data symbols (line code)

Access control

PPP T M RRR

PPP Priority; T Token bit M Monitor bit; RRR Reservation

Frame control

FF Z Z Z Z Z Z

FF frame type ZZZZZZ control bit

Ending delimiter

J K 1 J K 1 I E

I intermediate-frame bit

E error-detection bit

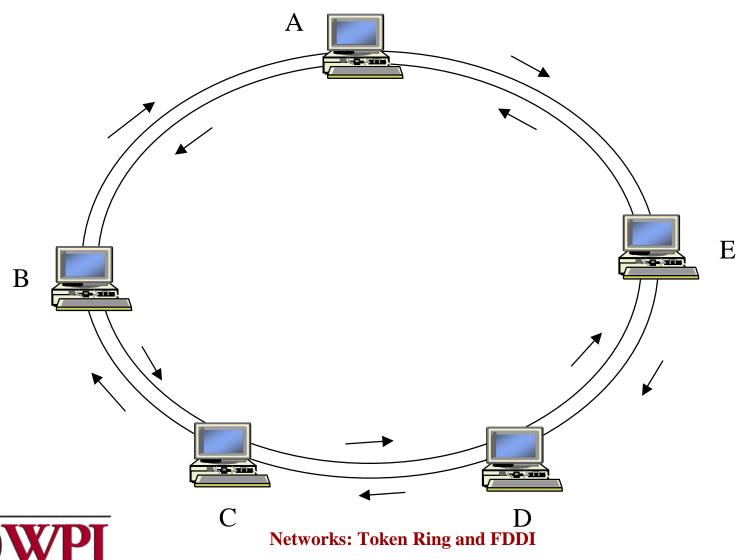
Frame status

A C x x A C x x

A address-recognized bit

xx undefined

C frame-copied bit


Networks: Token Ring and FDDI

Fiber Distributed Data Interface (FDDI)

- FDDI uses a ring topology of multimode or single mode optical fiber transmission links operating at 100 Mbps to span up to 200 kms and permits up to 500 stations.
- Employs dual counter-rotating rings.
- 16 and 48-bit addresses are allowed.
- In FDDI, token is absorbed by station and released as soon as it completes the frame transmission *[release token after transmission]*.

FDDI – Dual Token Ring

FDDI Repair

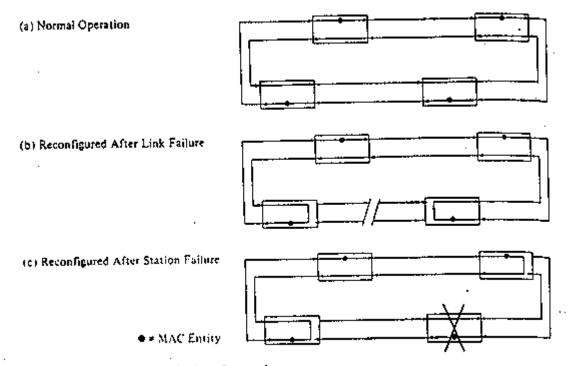
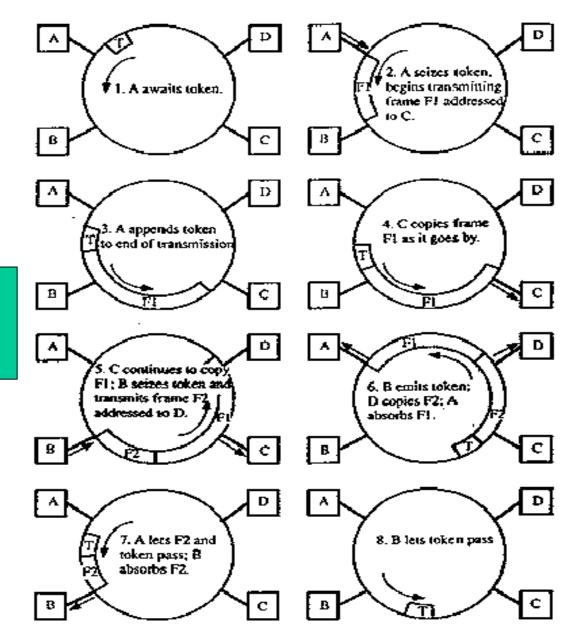



FIGURE 6.7 FDD1 Dual-Ring Operation

FDDI Ring

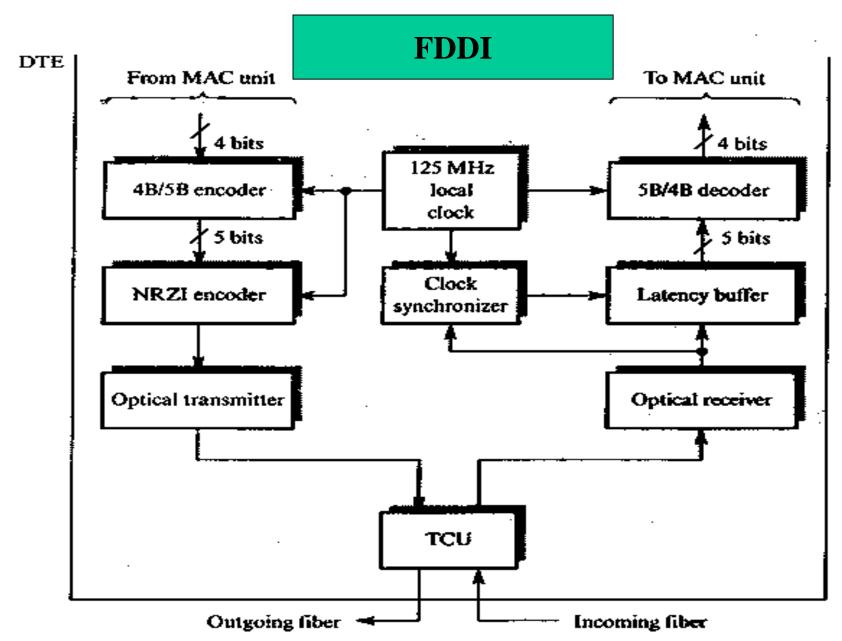
Operation

Networks: Token Ring and FDDI

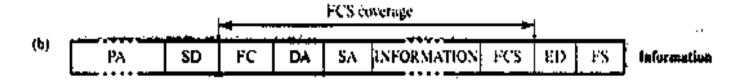
FDDI

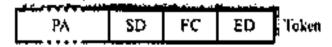
- To accommodate a mixture of stream and bursty traffic, FDDI is designed to handle two types of traffic:
 - Synchronous frames that typically have tighter delay requirements (e.g., voice and video)
 - Asynchronous frames have greater delay tolerances (e.g., data traffic)
- FDDI uses TTRT (Target Token Rotation Time) to ensure that token rotation time is less than some value.

FDDI Data Encoding


- Cannot use differential Manchester because 100 Mbps FDDI would require 200 Mbaud!
- Instead each ring interface has its own <u>local</u> <u>clock</u>.
 - Outgoing data is transmitted using this clock.
 - Incoming data is received using a clock that is frequency and phase locked to the transitions in the incoming bit stream.

FDDI Data Encoding


- Data is encoded using a 4B/5B encoder.
 - For each four bits of data transmitted, a corresponding 5bit codeword is generated by the encoder.
 - There is a maximum of two consecutive zero bits in each symbol.
- The symbols are then shifted out through a NRZI encoder which produces a signal transition whenever a 1 bit is being transmitted and no transition when a 0 bit is transmitted → guarantees a signal transition at least every two bits.
- Local clock is 125MHz. This yields 100 Mbps (80% due to 4B/5B).



(m)	Deta symbols 4-bit data group 5-bit symbol	Control symbols	
	0000 11110	IDLE	11111
	0001 01001	1	11000
	001010100	9 K 9 9 9	10001
	0011 [010]	T	01101
:	0100 01010	R .	00111
	010101011	\$	11001
	0110 01110	QUIET	00000
	011101111	HALT	00100
	1000 10010		
	1001 10011	•	
	, 1010 - 10110		
	1011 10111		
	1100 11010		
	1101 11011		
	1110 11100		
	1111 11101		

Figure 7.15 FDDI line coding and framing detail:

- (a) 4B5B codes;
- (b) frame formats.

PA = Preamble (16 or more symbols)

SD = Start delimiter (2 symbols)

FC = Frame control (2 symbols)

DA = Destination address (4 or 12 symbols)

SA = Source address (4 or 12 symbols)

FCS = Frame check sequence (8 symbols)

ED = End delimiter (1 or 2 symbols)

FS = Frame status (3 symbols)

FDDI frame structure

Token Frame Format

PRE SD FC ED

Data Frame Format

8	1	. 1	2 or 6	2 or 6		4	1	1
PRE	SD	FC	Destination	Source	Information	FCS	ED	FS
			Address	Address				

Preamble

Frame CLFFZZZZ Control

C = Synch/Asynch

L = Address length (16 or 48 bits)

FF = LLC/MAC control/reserved frame type

Leon-Garcia & Widjaja: Communication Networks

Networks: Token Ring and FDDI

More FDDI Details

- Transmission on optical fiber requires ASK
- The simplest case: coding is done via the absence or presence of a carrier signal {Intensity Modulation}.
- Specific 5-bit codeword patterns chosen to guarantee no more than three zeroes in a row to provide for adequate synchronization.
- 1300 nm wavelength specified.
- Dual rings (primary and secondary) transmit in opposite directions.
- Normally, second ring is **idle** and used for redundancy for automatic repair (self-healing).

Differences between 802.5 and FDDI

Token Ring

- Shielded twisted pair
- 4, 16 Mbps
- No reliability specified
- Differential Manchester
- Centralized clock
- Priority and Reservation bits
- New token after receive

FDDI

- Optical Fiber
- 100 Mbps
- Reliability specified (dual ring)
- 4B/5B encoding
- Distributed clocking
- Timed Token Rotation Time
- New token after transmit

