Physical Layer – Part 2

Data Encoding Techniques

Analog and Digital Transmissions

Figure 2-23.The use of both analog and digital transmissions for a computer to computer call. Conversion is done by the modems and codecs.

Data Encoding Techniques

- Digital Data, Analog Signals [modem]
- Digital Data, Digital Signals [wired LAN]
- Analog Data, Digital Signals [codec]
 - Frequency Division Multiplexing (FDM)
 - Wave Division Multiplexing (WDM) [fiber]
 - Time Division Multiplexing (TDM)
 - Pulse Code Modulation (PCM) [T1]
 - Delta Modulation

Digital Data, Analog Signals [Example – modem]

- Basis for analog signaling is a continuous, constant-frequency signal known as the *carrier frequency*.
- Digital data is encoded by modulating one of the three characteristics of the carrier: <u>amplitude</u>, <u>frequency</u>, or <u>phase</u> or some combination of these.

Figure 2-24.

Modems

- All advanced modems use a *combination of modulation techniques* to transmit <u>multiple bits per</u> <u>baud</u>.
- Multiple amplitude and multiple phase shifts are combined to transmit several bits per symbol.
- **QPSK (Quadrature Phase Shift Keying)** uses multiple phase shifts per symbol.
- Modems actually use Quadrature Amplitude Modulation (QAM).
- These concepts are explained using <u>constellation</u> <u>points</u> where a point determines a specific amplitude and phase.

Constellation Diagrams

(a) QPSK.

(b) QAM-16. (c) QAM-64. Figure 2-25.

Digital Data, Digital Signals [the technique used in a number of LANs]

- Digital signal is a sequence of discrete, discontinuous voltage pulses.
- Bit duration :: the time it takes for the transmitter to emit the bit.
- Issues
 - Bit timing
 - Recovery from signal
 - Noise immunity

$NRZ (\underline{Non-Return-to-Zero}) Codes$

Uses two different voltage levels (one positive and one negative) as the signal elements for the two binary digits.

NRZ-L (Non-Return-to-Zero-Level)

The voltage is constant during the bit interval.

 $1 \Leftrightarrow$ negative voltage

 $0 \Leftrightarrow$ positive voltage

NRZ-L is used for short distances between terminal and modem or terminal and computer.

NRZ (<u>Non-Return-to-Zero</u>) Codes NRZ-I (Non-Return-to-Zero-Invert on ones) The voltage is constant during the bit interval.

1 ⇔ existence of a *signal transition* at the beginning of the bit time (either a low-to-high or a high-to-low transition)

 $0 \Leftrightarrow$ **no** *signal transition* at the beginning of the bit time

NRZI is a *differential encoding* (i.e., the signal is decoded by comparing the polarity of adjacent signal elements.)

Bi – Phase Codes

- Bi- phase codes require at least one transition per bit time and may have as many as two transitions.
- the maximum modulation rate is twice that of NRZ
 greater transmission bandwidth is required.
- Advantages:
- Synchronization with a predictable transition per bit time the receiver can "synch" on the transition [self-clocking].
- No d.c. component
- Error detection the absence of an expected transition can used to detect errors.

Manchester encoding

- There is **always** a mid-bit transition {which is used as a clocking mechanism}.
- The **direction** of the mid-bit transition represents the digital data.

 $1 \Leftrightarrow$ **low-to-high** transition

 $0 \Leftrightarrow$ **high-to-low** transition

Textbooks disagree on this definition!!

Consequently, there may be a second transition at the beginning of the bit interval.

Used in 802.3 baseband coaxial cable and CSMA/CD twisted pair.

Differential Manchester encoding

- mid-bit transition is **ONLY** for clocking.
 - $1 \Leftrightarrow$ **absence** of transition at the beginning of the bit interval
 - $0 \Leftrightarrow$ **presence** of transition at the beginning of the bit interval

Differential Manchester is both differential and bi-phase. Note – the coding is the opposite convention from NRZI. Used in 802.5 (token ring) with twisted pair.

 * Modulation rate for Manchester and Differential Manchester is twice the data rate → inefficient encoding for longdistance applications.

Bi-Polar Encoding

 $0 \Leftrightarrow \mathbf{0}$ voltage

- Has the same issues as NRZI for a long string of 0's.
- A systemic problem with polar is the polarity can be backwards.

	¦ 1	0	1	0	1	1	1	0	0	
Unipolar	1					1 	 	1		
NRZ	I I	1		1	1	 	 	1	I	
	I I I	 				 	 	 	I I	I I I
Polar NRZ						I I	l I		1	I I
	1					1 	1			
	1 					 		 		1
NRZ-Inverted							1]	1	<u> </u>	1
(Differential	1	1						I I	<u> </u>	I
Encoding)						!	1	I I I		1
						1 	1 1 1	1 1 1		
Bipolar							1	1 		
Encoding	 									<u> </u>
e	I I I					1	1			
Manchastar	. <u> </u>							1		1
Fncoding										
Lincounig								¦	ļ L	1
Differential	I I I				 	I I I	I I I	I I I	I I I	I I
Manchester					1		I I			I I I
Encoding	1 1 1				I I	I I I	I I			
					1 L 1 1		1 L 1 1	J) L _	
Copyright ©2000 The Mc	raw Hill Con	panies	Leon-Garc	a & Widjaja:	Communicatio	n Networks	 	I I I	Figure 3	3.25
	r			 	 	 	 	I I I	 	1
1865										

Analog Data, Digital Signals [Example – PCM (Pulse Code Modulation)]

- The most common technique for using digital signals to encode analog data is PCM.
- Example: To transfer analog voice signals off a local loop to digital end office within the phone system, one uses a codec.
- Because voice data limited to frequencies below 4000 HZ, a codec makes 8000 samples/sec. (i.e., 125 microsec/sample).

Multiplexing

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.1

Frequency-division Multiplexing

(a) Individual signals occupy *H* Hz

(b) Combined signal fits into channel bandwidth

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.2

Networks: Data Encoding

18

Frequency-division Multiplexing

Figure 2-31. (a) The original bandwidths. (b) The bandwidths raised in frequency. (c) The multiplexed channel.

Wavelength Division Multiplexing

Figure 2-32.

Time-division Multiplexing

(a) Each signal transmits 1 unit every 3T seconds

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.3

Networks: Data Encoding

21

Time-division Multiplexing

divided into frames. Each frame is divided into time slots that are allocated in a fixed order to the different incoming channels.

FIGURE

Statistical Multiplexing - Concentrator

Pulse Code Modulation (PCM)

- Analog signal is sampled.
- Converted to discrete-time continuousamplitude signal (Pulse Amplitude Modulation)
- Pulses are *quantized* and assigned a digital value.

– A 7-bit sample allows 128 quantizing levels.

Pulse Code Modulation (PCM)

- PCM uses non-linear encoding, i.e., amplitude spacing of levels is non-linear
 - There is a greater number of quantizing steps for low amplitude
 - This reduces overall signal distortion.
- This introduces quantizing error (or noise).
- PCM pulses are then encoded into a digital bit stream.
- 8000 samples/sec x 7 bits/sample = 56 Kbps for a single voice channel.

Digit	Binary equivalent	PCM waveform
0	0000	CALCUMPT ALL C
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	JULL

(b)

Figure 5.10 Pulse Code Modulation

PCM Nonlinear Quantization Levels

T1 System

Copyright ©2000 The McGraw Hill Companies

WPI

Leon-Garcia & Widjaja: Communication Networks

Figure 4.4

Networks: Data Encoding

28

TDM

Figure 2-33.T1 Carrier (1.544Mbps)

Delta Modulation (DM)

- The basic idea in *delta modulation* is to approximate the derivative of analog signal rather than its amplitude.
- The analog data is approximated by a staircase function that moves up or down by one quantization level at each sampling time. → output of DM is a single bit.
- PCM preferred because of better SNR characteristics.

