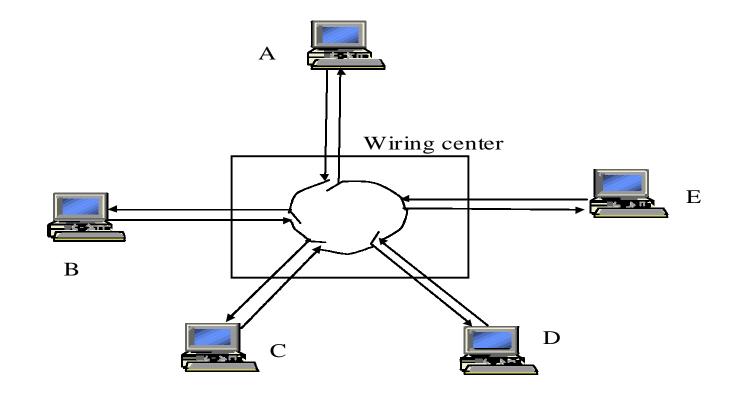
Token Ring and FDDI


IEEE 802.5 and Token Ring

- Proposed in 1969 and initially referred to as a *Newhall ring*.
- Token ring :: a number of stations connected by transmission links in a ring topology. Information flows *in one direction along the ring* from source to destination and back to source.
- Medium access control is provided by a small frame, **the token**, that circulates around the ring when all stations are idle. *Only the station possessing the token is allowed to transmit at any given time*.

Token Ring Operation

- When a station wishes to transmit, it must wait for token to pass by and *seize the token*.
 - One approach: change one bit in token which transforms it into a "*start-of-frame sequence*" and appends frame for transmission.
 - Second approach: station claims token by removing it from the ring.
- Frame circles the ring and is removed by the transmitting station.
- Each station interrogates passing frame, if destined for station, it copies the frame into local buffer. *{Normally, there is a one bit delay as the frame passes through a station.}*

Token Ring Network with star topology

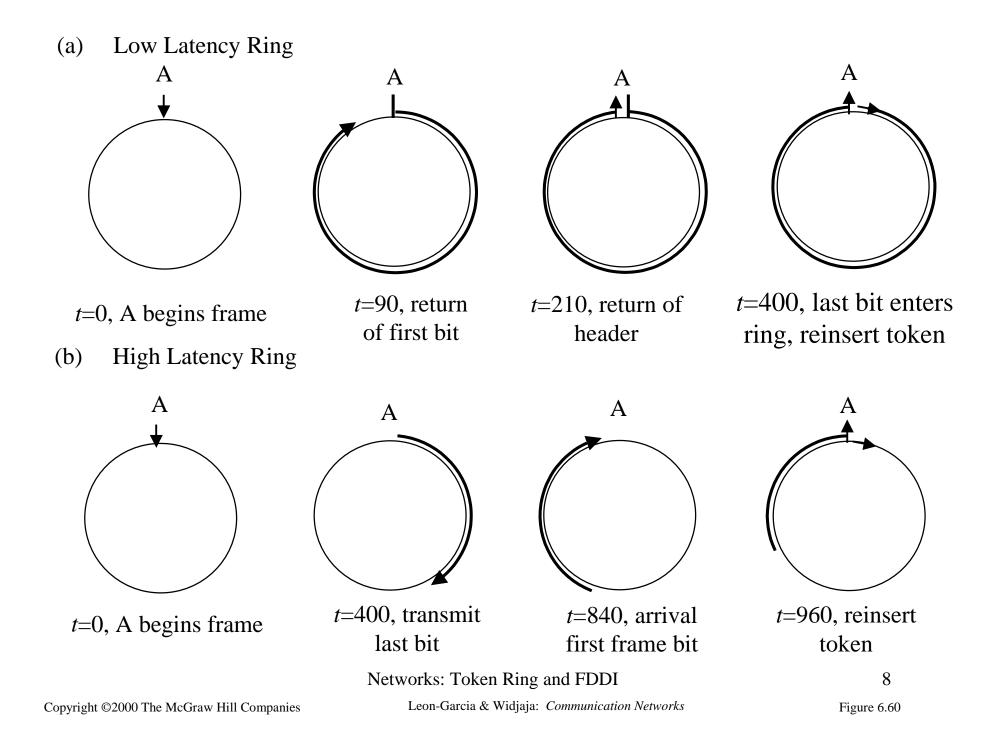
Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 6.58

Networks: Token Ring and FDDI

5


Re-inserting token on the ring

Choices:

- 1. After station has completed transmission of the frame.
- 2. After leading edge of transmitted frame has returned to the sending station

The essential issue is whether more than one frame is allowed on the ring at the same time.

IEEE 802.5 Token Ring

- 4 and 16 Mbps using twisted-pair cabling with differential Manchester line encoding.
- Maximum number of stations is 250.
- Waits for last byte of frame to arrive before reinserting token on ring *{new token after received}*.
- 8 priority levels provided via two 3-bit fields (priority and reservation) in data and token frames.
- Permits 16-bit and 48-bit addresses (same as 802.3).

Token Ring

- Under light load delay is added due to waiting for the token.
- Under heavy load ring is "round-robin"
- The ring must be long enough to hold the complete token.
- Advantages fair access
- Disadvantages ring is single point of failure, added issues due to token maintenance.

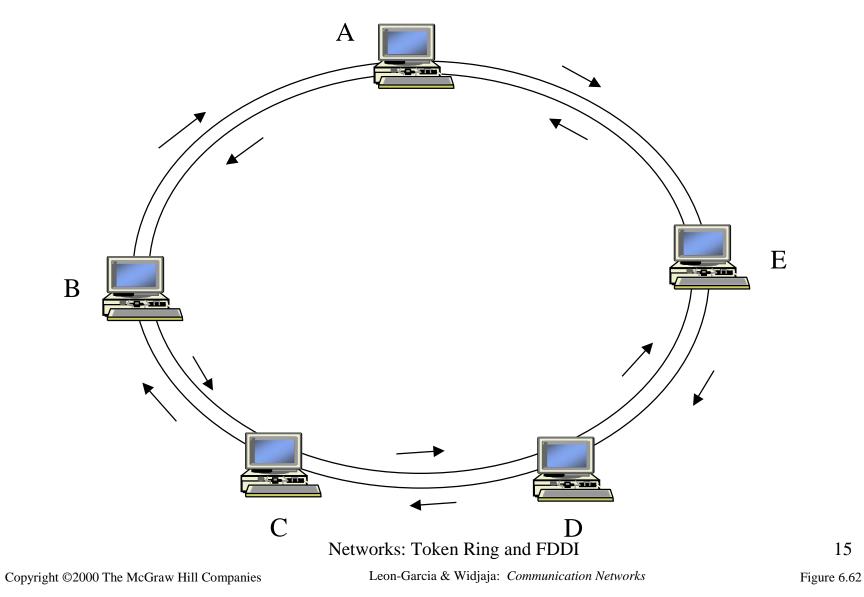
Token Maintenance Issues

What can go wrong?

- Loss of token (no token circulating)
- Duplication of token (forgeries or mistakes)
 The need to designate one station as the

active ring monitor.

- Persistently circulating frame
- Deal with active monitor going down.


		IEEF	E 80	2.5	Tok	ten a	anc	l dat	ta	fran	ne st	ructui	re	
	Token Frame Format							SD		AC	ED			
Data	Frame	Forma	at				I				<u></u>	1		
1	1	1	2	2 or (6	,	2 or	6				4	1	1
SD	AC	FC		estir Add	nation ress		louro ddro		In	form	ation	FCS	ED	FS
Starti delim	U		J	K	0 J	K () (0		J,	K noi	n-data sy	ymbols	(line code
Acce contr			PI	P P	Т	M	RF	R R				rity; T ' or bit; 1		bit eservation
Frame contro			FF		ZZ	Ζ Ζ	ZZ	Z		F Z		frame Z contr	• 1	
Endin delim	-		J	K	1 J	K 1	I	E	,	I E		ermedia or-detec		
Frame status	-		A	C	X X	A	C	x	x	A xx C	undef	ss-recog fined -copied		bit
					Netw	vorks:	Toke	n Ring	g and	d FDD	I			1
1. 62000				T.e.	C	XX7:1	C	• ,	• • • •	, 1				Γ'

Leon-Garcia & Widjaja: Communication Networks

Fiber Distributed Data Interface (FDDI)

- FDDI uses a ring topology of multimode or single mode optical fiber transmission links operating at 100 Mbps to span up to 200 kms and permits up to 500 stations.
- Employs dual counter-rotating rings.
- 16 and 48-bit addresses are allowed.
- In FDDI, token is absorbed by station and released as soon as it completes the frame transmission *{release after transmission}*.

FDDI Token Ring

FDDI Repair

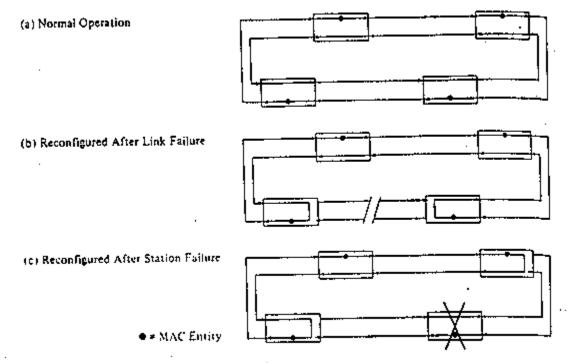
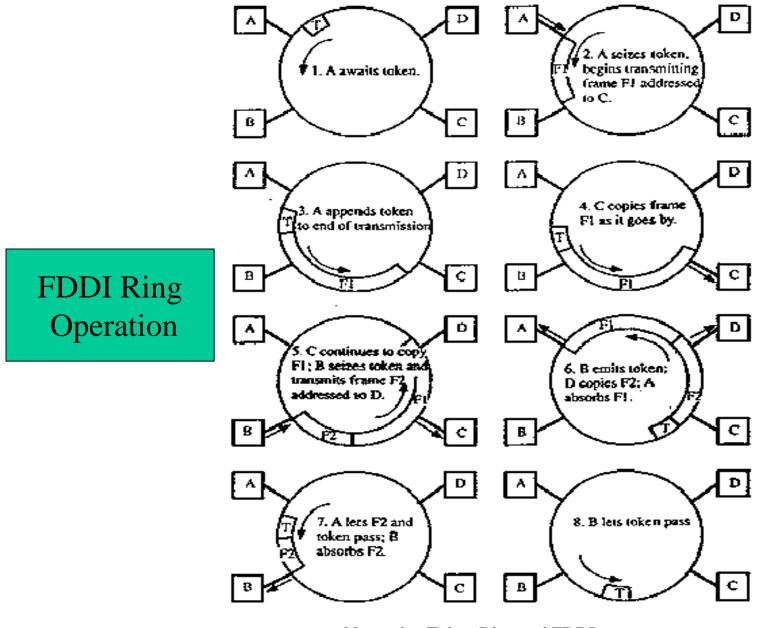
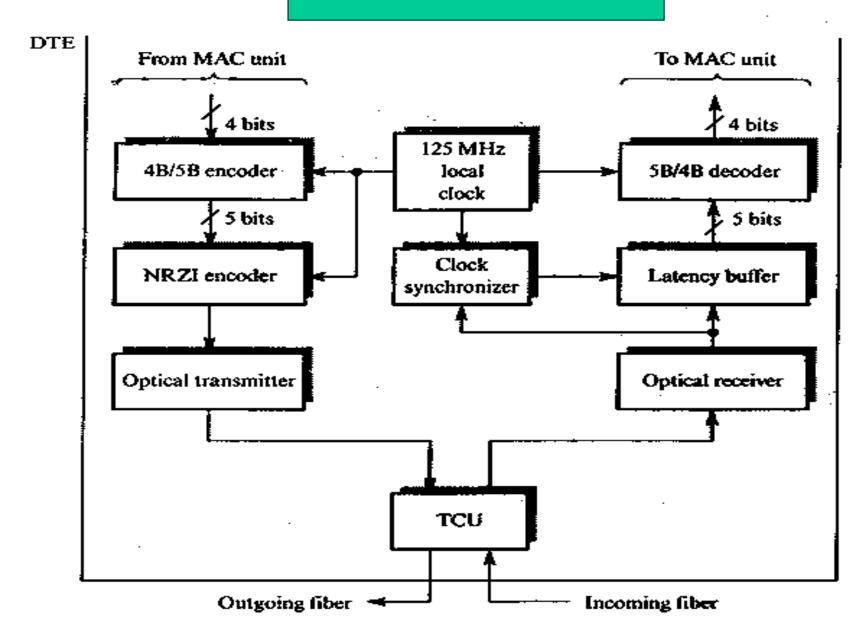



FIGURE 6.7 FDD1 Dual-Ring Operation

Networks: Token Ring and FDDI

FDDI

- To accommodate a mixture of stream and bursty traffic, FDDI is designed to handle two types of traffic:
 - Synchronous frames that typically have tighter delay requirements (e.g., voice and video)
 - Asynchronous frames have greater delay tolerances (e.g., data traffic)
- FDDI uses TTRT (Target Token Rotation Time) to ensure that token rotation time is less than some value.


FDDI Data Encoding

- Cannot use *differential Manchester* because 100 Mbps FDDI would require 200 Mbaud!
- Instead each ring interface has its own <u>local</u> <u>clock</u>.
 - Outgoing data is transmitted using this clock.
 - Incoming data is received using a clock that is frequency and phase locked to the transitions in the incoming bit stream.

FDDI Data Encoding

- Data is encoded using a **4B/5B encoder**.
 - For each four bits of data transmitted, a corresponding 5bit codeword is generated by the encoder.
 - There is a maximum of two consecutive zero bits in each symbol.
- The symbols are then shifted out through a NRZI encoder which produces a signal transition whenever a 1 bit is being transmitted and no transition when a 0 bit is transmitted → guarantees a signal transition at least every two bits.
- Local clock is 125MHz. This yields 100 Mbps (80% due to 4B/5B).

FDDI

<u>*</u>

ł

(...)

Deta symbols 4-bit data group 5-bit symbol	Control symbols	
0000	IDLE	11111
000) 0100)	1	11000
001010100	- K	10001
001110101	Т	01101
010001010	K je v	00111
0101 01011	S	11001
0110 01110	QUIET	00000
011101111	HALT	00100
1000 10010		
1001 10011		
, 1010 - 10110		
1011		
1100 11010		
1101		
1110 • 11100		
1111 11101		

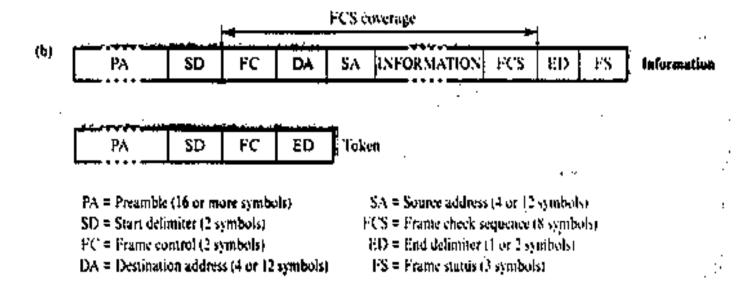


Figure 7.15 FDDI line coding and framing detail: (a) 4B5B codes; (b) frame formats.

FDDI frame structure

Token Frame Format	PRE	SD	FC	ED	
--------------------	-----	----	----	----	--

Data Frame Format

8	1	1	2 or 6	2 or 6		4	1	1
PRE	SD	FC	Destination	Source	Information	FCC	ED	FS
IKL	SD	ГC	Address	Address		FC2		ГЭ

Preamble

Frame	CLFFZZZZ	C = Synch/Asynch
Control		L = Address length (16 or 48 bits)
		FF = LLC/MAC control/reserved frame type

Leon-Garcia & Widjaja: Communication Networks

Figure 6.63

23

More FDDI Details

- Transmission on optical fiber requires ASK
- The simplest case: coding is done via the absence or presence of a carrier signal *{Intensity Modulation}*
- Specific 5-bit codeword patterns chosen to guarantee no more than three zeroes in a row to provide for adequate synchronization.
- 1300 nm wavelength specified
- Dual rings (primary and secondary) –transmit in opposite directions
- Normally, second ring is **idle** and used for redundancy for automatic repair (self-healing).

Differences between 802.5 and FDDI

Token Ring

- Shielded twisted pair
- 4, 16 Mbps
- No reliability specified
- Differential Manchester
- Centralized clock
- Priority and Reservation bits
- New token *after receive*

FDDI

- Optical Fiber
- 100 Mbps
- Reliability specified (dual ring)
- 4B/5B encoding
- Distributed clocking
- Timed Token Rotation Time
- New token after transmit