
Networks: TCP/IP sockets 1

Elementary TCP Sockets

Chapter 4
UNIX Network Programming
Vol. 1, Second Ed. Stevens

Networks: TCP/IP sockets 2

Application 1

Socket

socket
interface

user

kernel

Application 2

user

kernel

Underlying
communication

Protocols

Underlying
communication

Protocols

Communications
network

Socket

socket
interface

Figure 2.16Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks

Networks: TCP/IP sockets 3

Networks: TCP/IP sockets 4

socket()

bind()

listen()

read()

close()

socket()

connect()

read()

write()

close()

blocks until server receives
a connect request from client

data

data

Server

Client
accept()

write()

connect negotiation

Figure 2.17Leon-Garcia & Widjaja: Communication NetworksCopyright ©2000 The McGraw Hill Companies

TCP socket calls

Networks: TCP/IP sockets 5

socket()

bind()

sendto()

close()

socket()

bind()

recvfrom()

sendto()

close()

blocks until server
receives data from client data

data

Server

Client

recvfrom()

Figure 2.18Leon-Garcia & Widjaja: Communication NetworksCopyright ©2000 The McGraw Hill Companies

UDP socket calls

Not needed

Networks: TCP/IP sockets 6

System Calls for Elementary TCP Sockets
#include <sys/types.h>
#include <sys/socket.h>

family: specifies the protocol family {AF_INET for TCP/IP}
type: indicates communications semantics

SOCK_STREAM stream socket TCP
SOCK_DGRAM datagram socket UDP
SOCK_RAW raw socket

protocol: set to 0 except for raw sockets
returns on success: socket descriptor {a small nonnegative integer}

on error: -1
Example:
If ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)

err_sys (“socket call error”);

socket Function
int socket (int family, int type, int protocol);

Networks: TCP/IP sockets 7

sockfd: a socket descriptor returned by the socket function
*servaddr: a pointer to a socket address structure
addrlen: the size of the socket address structure

The socket address structure must contain the IP address and the port
number for the connection wanted.

In TCP connect initiates a three-way handshake. connect returns when the
connection is established or when an error occurs.

returns on success: 0
on error: -1

Example:
if (connect (sockfd, (struct sockaddr *) &servaddr, sizeof (servaddr)) != 0)

err_sys(“connect call error”);

connect Function

int connect (int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);

Networks: TCP/IP sockets 8

bind assigns a local protocol address to a socket.
protocol address: a 32 bit IPv4 address + a 16 bit TCP or UDP port

number.
sockfd: a socket descriptor returned by the socket function.
*myaddr: a pointer to a protocol-specific address.
addrlen: the size of the socket address structure.
Servers bind their “well-known port” when they start.
returns on success: 0

on error: -1
Example:
If (bind (sd, (struct sockaddr *) &servaddr, sizeof (servaddr)) != 0)

errsys (“bind call error”);

bind Function

int bind (int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);

Networks: TCP/IP sockets 9

Listen is called only by a TCP server and performs two actions:
1. Converts an unconnected socket into a passive socket.
2. Specifies the maximum number of connections that the

kernel should queue for this socket.
returns on success: 0

on error: -1
Example:
If (listen (sd, 2) != 0)

errsys (“listen call error”);

listen Function

int listen (int sockfd, int backlog);

Networks: TCP/IP sockets 10

accept is called by the TCP server to return the next completed
connection from the front of the completed connection queue.

sockfd: this is the same socket descriptor as in listen call.
*cliaddr: used to return the protocol address of the connected peer process

(i,e., the client process).
*addrlen: {this is a value-result argument}

before the accept call: we set the integer value pointed to by *addrlen
to the size of the socket address structure pointed to by cliaddr;
on return from accept call: this integer value contains the actual
number of bytes stored in the socket address structure.

returns on success: a new socket descriptor
on error: -1

accept Function

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

Networks: TCP/IP sockets 11

For accept the first argument sockfd is the listening socket
and the returned value is the connected socket.

The server will have one connected socket for each client
connection accepted.

When the server is finished with a client, the connected
socket must be closed.

Example:
sfd = accept (s, NULL, NULL);
if (sfd == -1) err_sys (“accept error”);

accept Function (cont.)

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t addrlen);

Networks: TCP/IP sockets 12

close marks the socket as closed and returns to the process
immediately.

sockfd this socket descriptor is no longer useable.
Note – TCP will try to send any data already queued to the

other end before the normal connection termination
sequence.

Returns on success: 0
on error: -1

Example:

close (s);

close Function

int close (int sockfd);

