LANS

Studying Local Area Networks Via Media Access Control (MAC) SubLayer

Local Area Networks

- Aloha
- Slotted Aloha
- CSMA (non-persistent, 1-persistent, p-persistent)
- CSMA/CD
- Ethernet
- Token Ring

	Network Layer				Network Laye	er	
LLC	802.2 Logical Link Control				Data Link Layer		
MAC	802.3 CSMA-CD	802.5 Token Ring	802.11 Wireless LAN	Other LANs			
Physical Layer	Various Physical Layers				Physical Layer		
	IEEE 802				OSI	Figure 6.11	

Copyright ©2000 The McGraw Hill Companies

Networks: Local Area Networks

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 6.1

Networks: Local Area Networks

4

Static Channel Allocation Problem

- The history of broadcast networks includes satellite and packet radio networks.
- Let us view a satellite as a repeater amplifying and rebroadcasting everything that comes in.
- To generalize this problem, consider networks where every frame sent is *automatically* received by every site (node).

Static Channel Allocation Problem

We model this situation as n independent users (one per node), each wanting to communicate with another user and they have no other form of communication.

Channel Allocation Problem

To manage a single broadcast channel which must be shared *efficiently* and *fairly* among n uncoordinated users.

Networks: Local Area Networks

Ring networks

Multitapped Bus

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 6.5

Networks: Local Area Networks

Possible Model Assumptions for Channel Allocation Problem

- 0. Listen property :: (applies to satellites)The sender is able to *listen* to sent frame one round-trip after sending it.
 - → no need for explicit ACKs
- 1. Model consists of n independent stations.
- 2. A <u>single</u> channel is available for communications.

Possible Model Assumptions for Channel Allocation Problem

- 3. *Collision Assumption* :: If two frames are transmitted simultaneously, they overlap in time and the resulting signal is garbled. *This event is a collision*.
- 4a. *Continuous Time Assumption* :: frame transmissions can begin at any time instant.
- 4b. *Slotted Time Assumption* :: time is divided into discrete intervals (slots). Frame transmissions always begin at the start of a time slot.

Possible Model Assumptions for Channel Allocation Problem

5a. Carrier Sense Assumption ::

Stations can tell if the channel is busy (in use) before trying to use it. If the channel is busy, no station will attempt to use the channel until it is idle.

5b. No Carrier Sense Assumption ::

Stations are unable to sense channel before attempting to send a frame. They just go ahead and transmit a frame.

a :: Relative Propagation Time

length of the data path (in bits) a =length of a standard frame (in bits) -ORpropagation time (in seconds) a =transmission time (in seconds) -ORdelay-bandwidth product* ----- [LG&W def p.346] average frame size Delay-bandwidth product :: the product of the capacity (bit

rate) and the delay.

Relative Propagation Time

 \mathbf{R} = capacity (data rate)

 \mathbf{d} = maximum distance of communications path

v = propagation velocity (Assume v = 2/3 speed of light 2 x 10⁸ meters/second)

L = frame length

$$a = ----- = ---- L/R$$
 Rd
 vL

Upper Bound on Utilization for Shared Media LAN

Assume a perfect, efficient access that allows one transmission at a time where there are no collisions, no retransmissions, no delays between transmissions and no bits wasted on overhead. {These are best-case assumptions}

Maximum Utilization for LANs

Networks: Local Area Networks

Efficiency [LG&W p.346]

Efficiency =
$$\frac{L}{L + 2t_{prop}}R$$
 = $\frac{1}{1 + 2a}$

Why is this result different?

LAN Design considering Performance

For broadcast LANs what are the factors under the designer's control that affect LAN performance?

- Capacity {function of media}
- Propagation delay {function of media, distance}
- Bits /frame (frame size)
- MAC protocol
- Offered load depends on how retransmissions are handled
- Number of stations
- Error rate

Historic LAN Performance Notation

- I :: input load the total (normalized) rate of data generated by all n stations
- G:: offered load the total (normalized) data rate presented to the network *including* <u>retransmissions</u>
- S:: throughput of LAN the total (normalized) data rate transferred between stations
- D:: average frame delay the time from when a frame is ready for transmission until completion of a successful transmission.

Normalizing Throughput (S)

[assuming one packet = one frame]

Throughput (S) is normalized using packets/packet time where

packet time :: the time to transmit a *standard* fixed-length packet

```
i.e., packet length
packet time = -----
bit rate
```

NOTE: Since the channel capacity is one packet /packet time, S can be viewed as *throughput as a fraction of capacity*.

Represented in LG&W by p in later graphs.

Historic LAN Performance Notation

retransmissions

Typical frame delay versus throughput performance

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Networks: Local Area Networks

Figure 6.8

24

Delay-Throughput Performance Dependence on a

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

ALOHA

• Abramson solved the channel allocation problem for ground radio at University of Hawaii in 1970's

Aloha Transmission Strategy

Stations transmit whenever they have data to send

 Collisions will occur and colliding frames are destroyed

Aloha Retransmission Strategy

Station waits a random amount of time before sending again

ALOHA

First transmission

Retransmission

random backoff period B

Slotted ALOHA (Roberts 1972)

• uses discrete time intervals as *slots* (*i.e.*, *slot* = *one packet transmission time*) and synchronize send time (e.g., use "pip" from a satellite)

Slotted Aloha Strategy

Stations transmit ONLY at the beginning of a time slot

 Collisions will occur and colliding frames are destroyed

Slotted Aloha Retransmission Strategy

Station waits a random amount of time before sending again

Slotted ALOHA

random backoff period B slots

ALOHA and Slotted ALOHA Throughput versus Load

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 6.17

Non-Persistent CSMA (Carrier Sense with Multiple Access)

nonpersistent CSMA

{less greedy}

- 1. Sense the channel.
- 2. IF the channel is *idle*, THEN transmit.

3. IF the channel is *busy*, THEN wait a random amount of time and start over.

1 - Persistent CSMA (Carrier Sense with Multiple Access)

- 1 persistent CSMA {selfish}
- 1. Sense the channel.
- 2. IF the channel is *idle*, THEN transmit.

3. IF the channel is *busy*, THEN continue to listen until channel is *idle*. Now transmit immediately.

P - Persistent CSMA (Carrier Sense with Multiple Access)

p - persistent CSMA {a slotted approximation}

- 1. Sense the channel.
- 2. IF the channel is *idle*, THEN with probability **p** transmit and with probability (**1-p**) delay for <u>one</u> time slot and start over.
- 3. IF the channel is *busy*, THEN delay *one time- slot* and start over.

P – Persistent CSMA details

- the time slot is usually set to the maximum propagation delay.
- as **p** decreases, stations wait longer to transmit but the number of collisions decreases
- Considerations for the choice of **p**:
- (**n x p**) must be < **1** for stability, where **n** is maximum number of stations, i.e.,

CSMA Collisions

- In all three cases a collision is possible.
- CSMA determines collisions by the lack of an ACK which results in a TIMEOUT. {This is extremely expensive with respect to performance.}
- If a collision occurs, THEN wait a <u>random amount</u> of time and start over.

CSMA/CD Collisions

- If a collision is detected during transmission, THEN immediately cease transmitting the frame.
- The first station to detect a collision sends a *jam signal* to all stations to indicate that there has been a collision.
- After receiving a *jam signal*, a station that was attempting to transmit waits a <u>random amount of time</u> before attempting to retransmit.
- The maximum time needed to detect a collision = 2 x propagation delay.

CSMA vs CSMA/CD

- CSMA is essentially a historical technology now.
- If propagation time is short compared to transmission time, station can be *listening before sending* with CSMA
- Collision detection (CD) accomplished by detecting voltage levels outside acceptable range. Thus attenuation limits distance without a repeater.
- If the collision time is short compared to packet time (i.e., small a), performance will increase due to CD

frame contention frame

Probability of 1 successful transmission:

$$P_{success} = np(1-p)^{n-1}$$

 $P_{success}$ is maximized at p=1/n:

$$P_{success}^{\max} = n(1 - \frac{1}{n})^{n-1} \to \frac{1}{e}$$

n

Networks: Local Area Networks

39

Throughput vs Load varying a

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 6.21 - Part 2

Networks: Local Area Networks

Throughput vs Load varying a

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 6.21 - Part 1

Networks: Local Area Networks

41

Maximum Achievable Throughputs

Frame Delay varying a

