Fast Ethernet and Gigabit Ethernet

Fast Ethernet (100BASE-T)

How to achieve 100 Mbps capacity?

Media Independent Interface provides three choices.

Fast Ethernet

• Three Physical Layer Choices

100BASE-T4 100BASE-TX 100BASE-FX

* Concept facilitated by 10Mbps/100Mbps Adapter Cards

	100BASE-TX		100BASE-FX	100BASE-T4
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTF
Signaling technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Data rate	100 Mbps	100 Mbps	100 Mbps	100 Mbps
Maximum segment length	100 m	100 m	100 m	100 m
Network span	200 m	200 m	400 m	200 m

Fast Ethernet Details

- UTP Cable has a 30 MHz limit
 →Not feasible to use clock encoding (i.e., NO Manchester encoding)
- Instead use bit encoding schemes with sufficient transitions for receiver to maintain clock synchronization.

- Can use <u>four</u> separate twisted pairs of Cat 3 UTP
- Utilize three pair in both directions (at 33 1/3 Mbps) with other pair for carrier sense/collision detection.
- Three-level ternary code is used **8B/6T**. *Prior to transmission each set of 8 bits is converted into 6 ternary symbols*.

- The signaling rate becomes $100 \ge 6/8$ -----= 25 MHz3
- Three signal levels : +V, 0, -V
- Codewords are selected such that line is d.c.balanced → all codewords have a combined weight of 0 or 1.

- Ethernet Interframe gap = 9.6 microseconds becomes 960 nanoseconds.
- 100 m. station to hub; 200 meters between stations
- Maximum of two Class II repeaters.

100 Base TX

- Uses two pair of twisted pair, one pair for transmission and one pair for reception. Uses either STP or Cat 5 UTP.
- Uses MTL-3 signaling scheme that involves three voltages.

100 BASE FX

- Uses two optical fibers, one for transmission and one for reception.
- Uses FDDI technology of converting 4B/5B to NRZI code group streams into optical signals.

Fast Ethernet Repeaters and Switches

- Class I Repeater supports *unlike* physical media segments (*only one per collision domain*)
- Class II Repeater limited to single physical media type (there may be two repeaters per collision domain)
- Switches to improve performance can add *fullduplex* and have *autonegotiation* for speed mismatches .

Collision Domains

Figure 7.10 100BASE-T Repeater Types

Figure 7.11 Example 100-Mbps Ethernet Backbone Strategy

Gigabit Ethernet History

- In February 1997 *the Gigabit Ethernet Alliance* announced that IEEE802.3z Task Force met to review the <u>first draft</u> of the Gigabit Ethernet Standard
- According to IDC by the end of 1997 85% of all network connections used Ethernet.
- →Higher capacity Ethernet was appealing because network managers can leverage their investment in staff skills and training
- 1000 BASE X (IEEE802.3z) was ratified in June 1998.

Gigabit Ethernet (1000 BASE X)

- Provides speeds of 1000 Mbps (i.e., one billion bits per second capacity) for half-duplex and full-duplex operation.
- Uses Ethernet frame format and MAC technology
 - CSMA/CD access method with support for *one repeater per collision domain*
 - Backward compatible with 10 BASE-T and 100 BASE-T
- Uses 802.3 *full-duplex Ethernet technology*
- Uses 802.3x *flow control*.

Gigabit Ethernet Technology

Fiber:

1000 BASE SX 1000 BASE LX short wavelength long wavelength

Copper:

1000 BASE CX 1000 BASE T shielded twisted pair unshielded twisted pair

* Based on Fiber Channel physical signaling technology.

	1000BaseSX	1000BaseLX	1000BaseCX	1000BaseT
Medium	Optical fiber multimode	Optical fiber single mode	Shielded copper cable	Twisted pair category 5 UTP
Maximum segment length Topology	two strands 550 m Star	two strands 5 km Star	25 m Star	100 m Star

-

TABLE 6.4 IEEE 802.3z Gigabit Ethernet medium alternatives

Gigabit Ethernet (1000 BASE-T)

GMII

Gigabit Media Independent Interface

- Allows any Physical Layer to be used with a given MAC
- Namely, Fiber channel Physical Layer can be used with with CSMA/CD
- Permits both full-duplex and half-duplex

1000 BASE SX

- Short wavelength
 - Supports duplex links up to 275 meters.
 - 770-860 nm range; 850 nm laser wavelength
 - Fiber Channel technology
 - PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line.
 - <u>Only</u> multimode fiber
 - Cheaper than LX.

8B/10B Encoder

10 Binary Lines to Serialized

EXAMPLES OF EIGHT-BIT CODE GROUPS

Code	Actual Byte	RD-	RD+	Effect on
Group	Being	Encoding	Encoding	RD after
Name	Encoded	Value	Value	Sending
D1.0	000 00001	011101 0100	100010 1011	same
D4.1	001 00100	110101 1001	001010 1001	flip
D28.5	101 11100	001110 1010	001110 1010	same
028.5	101 11100	001111 1010	110000 0101	flip

.....

•••

.

1000 BASE LX

- Long wavelength
 - Supports duplex links up to 550 meters.
 - 1270-1355 nm range; 1300 nm laser wavelength
 - Fiber Channel technology
 - PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line.
 - Either single mode or multimode fiber.

1000 BASE CX

- Shielded twisted pair
 - 'Short haul' copper jumpers
 - 25 meters or less *typically within wiring closet*.
 - PCS (Physical Code Sublayer) includes 8B/10B
 encoding with 1.25 Gbps line.
 - Each link is composed of a separate shielded twisted pair running in <u>each</u> direction.

- Four pairs of Category 5 UTP
- IEEE 802.3ab ratified in June 1999??
- Category 5, 6 and 7 copper up to 100 meters
- This requires <u>extensive signal processing</u>.

Gigabit Ethernet compared to Fiber Channel

- Since Fiber Channel (FC) already existed, the idea was to *immediately* leverage physical layer of FC into Gigabit Ethernet.
- The difference is that fiber channel was viewed as *specialized* for high-speed I/O lines. Gigabit Ethernet is general purpose and can be used as a high-capacity switch.

Gigabit Ethernet

- Viewed as LAN solution while ATM is WAN solution
- Gigabit Ethernet can be shared (hub) or switched.
- Shared types:
 - CSMA/CD with MAC changes:
 - carrier extension
 - Frame bursting
 - Buffered repeater {called Buffered Distributor}

Carrier Extension

Frame	RRRRRRRRRRR	
	Carrier Extension	
↓ 512 bytes →		

- For **10BaseT** : 2.5 km max; **slot time = 64 bytes**
- For 1000BaseT: 200 m max; slot time = 512 bytes
- **Carrier Extension ::** continue transmitting control characters [R] to fill collision interval
 - This permits minimum 64 byte frame to be handled.
- Control characters discarded at destination
- For small frames net throughput is only slightly better than Fast Ethernet

Frame Bursting

- Source sends out burst of frames without giving up control of the network
- Uses Ethernet Interframe gap filled with extension bits (96 bits)
- Maximum frame burst is 8192 bytes
- Three times more throughput for small frames

Based on Raj Jain slide

Buffered Distributor

- New type of 802.3 Hub where incoming frames are buffered in FIFOs
- CSMA/CD arbitration is inside the distributor to transfer frames from an incoming FIFO to <u>all</u> outgoing FIFOs
- All links are full-duplex
- Frame-based 802.3x flow control to handle buffer congestion

Based on Raj Jain slide