Data Encoding Techniques

Digital Data, Analog Signals [Example – modem]

- Basis for analog signaling is a continuous, constant-frequency signal known as the *carrier signal*.
- Digital data is encoded by modulating one of the three characteristics of the carrier: <u>amplitude</u>, <u>frequency</u>, or <u>phase</u> or some combination of these.

Modems

- Actually use Quadrature Amplitude Modulation (QAM)
- Use <u>constellation points</u> where point determines a specific amplitude and phase.

Signal Constellations

Note – textbook uses W instead of D in this figure!!

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 3.34

Digital Data, Digital Signals [the technique used in a number of LANs]

- Digital signal is a sequence of discrete, discontinuous voltage pulses.
- Bit duration :: the time it takes for the transmitter to emit the bit.
- Issues
 - Bit timing
 - Recovery from signal
 - Noise immunity

$NRZ (\underline{Non} - \underline{R}eturn - to - \underline{Z}ero) Codes$

• Uses two different voltage levels (one positive and one negative) as the signal elements for the two binary digits.

NRZ-L (<u>Non-R</u>eturn-to-<u>Z</u>ero-Level)

The voltage is constant during the bit interval.

 $1 \Leftrightarrow$ negative voltage

 $0 \Leftrightarrow$ positive voltage

Used for short distances between terminal and modem or terminal and computer.

NRZ (<u>Non-Return-to-Zero</u>) Codes NRZ-I (<u>Non-Return-to-Zero-Invert on ones</u>) The voltage is constant during the bit interval.

1 ⇔ existence of a *signal transition* at the beginning of the bit time (either a low-to-high or a high-to-low transition)

 $0 \Leftrightarrow$ **no** *signal transition* at the beginning of the bit time

NRZI is a *differential encoding* (i.e., the signal is decoded by comparing the polarity of adjacent signal elements.

Bi – Phase Codes

- Bi- phase codes require at least one transition per bit time and may have as many as two transitions.
- → the maximum modulation rate is twice that of NRZ → greater transmission bandwidth is required.

Advantages:

Synchronization – with a predictable transition per bit time the receiver can "synch on the transition [selfclocking]

No d.c. component

Error detection – the absence of an expected transition can used to detect errors.

Manchester encoding

- There is **always** a mid-bit transition {which is used as a clocking mechanism}.
- The **direction** of the mid-bit transition represents the digital data.

Consequently, there may be a second transition at the beginning of the bit interval.

Used in 802.3 baseband coaxial cable and CSMA/CD twisted pair.

Differential Manchester encoding

- mid-bit transition is **ONLY** for clocking.
 - $1 \Leftrightarrow$ **absence** of transition at the beginning of the bit interval
 - $0 \Leftrightarrow$ **presence** of transition at the beginning of the bit interval

Differential Manchester is both differential and bi-phase. Note – the coding is the opposite convention from NRZI. Used in 802.5 (token ring) with twisted pair.

 * Modulation rate for Manchester and Differential Manchester is twice the data rate → inefficient encoding for longdistance applications.

Bi-Polar Encoding

1 \Leftrightarrow alternating +1/2, -1/2 voltage

 $0 \Leftrightarrow \mathbf{0}$ voltage

- Has the same issues as NRZI for a long string of 0's.
- A systemic problem with polar is the polarity can be backwards.

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 3.25

Analog Data, Digital Signals [Example – PCM (Pulse Code Modulation)]

- The most common technique for using digital signals to encode analog data is PCM.
- Example: To transfer analog voice signals off a local loop to digital end office within the phone system, one uses a codec.
- Because voice data limited to frequencies below 4kHZ, a codec makes 8000 samples/sec. (i.e., 125 microsec/sample).

Frequency-division Multiplexing

(a) Individual signals occupy W Hz

(b) Combined signal fits into channel bandwidth

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: *Communication Networks* Networks: Data Encoding

Frequency-division Multiplexing

Time-division Multiplexing

(a) Each signal transmits 1 unit every 3T seconds

18

Time-division Multiplexing

Statistical Multiplexing [Concentrator]

Pulse Code Modulation (PCM)

- Analog signal is sampled.
- Converted to discrete-time continuousamplitude signal (Pulse Amplitude Modulation)
- Pulses are *quantized* and assigned a digital value.

– A 7-bit sample allows 128 quantizing levels.

Pulse Code Modulation (PCM)

- PCM uses non-linear encoding, i.e., amplitude spacing of levels is non-linear
 - There is a greater number of quantizing steps for low amplitude
 - This reduces overall signal distortion.
- This introduces quantizing error (or noise).
- PCM pulses are then encoded into a digital bit stream.
- 8000 samples/sec x 7 bits/sample = 56Kbps for a single voice channel.

Digit	Binary equivalent	PCM waveform
0	0000	A CONTRACTOR OF A CONTRACT OF
1	0001	
2	0010	
3	0011	
4	0100	T
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	JUL

(b)

Figure 5.10 Pulse Code Modulation

PCM Nonlinear Quantization Levels

T1 system

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.4

T1 Carrier

Delta Modulation (DM)

- The basic idea in *delta modulation* is to approximate the derivative of analog signal rather than its amplitude.
- The analog data is approximated by a staircase function that moves up or down by one quantization level at each sampling time. → output of DM is a single bit.
- PCM preferred because of better SNR characteristics.

DCC 6th Ed. W.Stallings

Delta Modulation - example

