
TCP TCP
Congestion ControlCongestion Control

Lecture material taken from
“Computer Networks A Systems Approach”,

Third Ed.,Peterson and Davie,
Morgan Kaufmann, 2003.

11Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

TCP Congestion ControlTCP Congestion Control
• Essential strategy :: The TCP host sends

packets into the network without a reservation
and then the host reacts to observable events.

• Originally TCP assumed FIFO queuing.
• Basic idea :: each source determines how

much capacity is available to a given flow in the
network.

• ACKs are used to ‘pace’ the transmission of
packets such that TCP is “self-clocking”.

22Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

AIMDAIMD
(Additive Increase / Multiplicative (Additive Increase / Multiplicative

Decrease)Decrease)
• CongestionWindow (cwnd) is a variable held by

the TCP source for each connection.

• cwnd is set based on the perceived level of
congestion. The Host receives implicit (packet
drop) or explicit (packet mark) indications of
internal congestion.

MaxWindow :: min (CongestionWindow , AdvertisedWindow)

EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked)

33Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Additive IncreaseAdditive Increase
• Additive Increase is a reaction to perceived

available capacity.
• Linear Increase basic idea:: For each “cwnd’s

worth” of packets sent, increase cwnd by 1
packet.

• In practice, cwnd is incremented fractionally for
each arriving ACK.

increment = MSS x (MSS /cwnd)
cwnd = cwnd + increment

44Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Source Destination

Add one packet
each RTT

Figure 6.8 Additive IncreaseFigure 6.8 Additive Increase

55Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Multiplicative DecreaseMultiplicative Decrease

* The key assumption is that a dropped packet and the
resultant timeout are due to congestion at a router or
a switch.
Multiplicate Decrease:: TCP reacts to a timeout by
halving cwnd.

• Although cwnd is defined in bytes, the literature often
discusses congestion control in terms of packets (or
more formally in MSS == Maximum Segment Size).

• cwnd is not allowed below the size of a single packet.

66Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

AIMDAIMD
(Additive Increase / Multiplicative (Additive Increase / Multiplicative

Decrease)Decrease)
• It has been shown that AIMD is a necessary

condition for TCP congestion control to be stable.
• Because the simple CC mechanism involves

timeouts that cause retransmissions, it is important
that hosts have an accurate timeout mechanism.

• Timeouts set as a function of average RTT and
standard deviation of RTT.

• However, TCP hosts only sample round-trip time
once per RTT using coarse-grained clock.

77Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time (seconds)

70

30
40
50

10

10.0

Figure 6.9 Typical TCPFigure 6.9 Typical TCP
Sawtooth PatternSawtooth Pattern

88Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Slow StartSlow Start
• Linear additive increase takes too long to

ramp up a new TCP connection from cold
start.

• Beginning with TCP Tahoe, the slow start
mechanism was added to provide an initial
exponential increase in the size of cwnd.

Remember mechanism by: slow start
prevents a slow start. Moreover, slow start
is slower than sending a full advertised
window’s worth of packets all at once.

99Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

SloSloww StartStart
• The source starts with cwnd = 1.
• Every time an ACK arrives, cwnd is

incremented.
cwnd is effectively doubled per RTT “epoch”.

• Two slow start situations:
At the very beginning of a connection {cold start}.
When the connection goes dead waiting for a
timeout to occur (i.e, the advertized window goes
to zero!)

1010Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Source Destination

Slow Start
Add one packet

per ACK

Figure 6.10 Slow StartFigure 6.10 Slow Start

1111Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Slow StartSlow Start

• However, in the second case the source
has more information. The current value
of cwnd can be saved as a congestion
threshold.

• This is also known as the “slow start
threshold” ssthresh.

1212Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

70

30
40
50

10

Figure 6.11 Behavior of TCPFigure 6.11 Behavior of TCP
Congestion ControlCongestion Control

1313Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Fast RetransmitFast Retransmit
• Coarse timeouts remained a problem, and Fast

retransmit was added with TCP Tahoe.
• Since the receiver responds every time a packet

arrives, this implies the sender will see duplicate
ACKs.

Basic Idea:: use duplicate ACKs to signal lost packet.

Fast Retransmit
Upon receipt of three duplicate ACKs, the TCP Sender

retransmits the lost packet.

1414Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Fast RetransmitFast Retransmit

• Generally, fast retransmit eliminates about half
the coarse-grain timeouts.

• This yields roughly a 20% improvement in
throughput.

• Note – fast retransmit does not eliminate all
the timeouts due to small window sizes at the
source.

1515Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Fast Retransmit

Based on three
duplicate ACKs

Figure 6.12 Fast RetransmitFigure 6.12 Fast Retransmit
1616Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

70

30
40
50

10

Figure 6.13 TCP Fast Retransmit Figure 6.13 TCP Fast Retransmit
TraceTrace

1717Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

TCP Congestion Control

Congestion
window

10

5

15

20

0

Slow
start

Congestion
avoidance

Congestion occurs

Threshold

Round-trip timesCopyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

1818
Figure 7.63

Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Fast RecoveryFast Recovery
• Fast recovery was added with TCP Reno.
• Basic idea:: When fast retransmit detects

three duplicate ACKs, start the recovery
process from congestion avoidance region
and use ACKs in the pipe to pace the
sending of packets.

Fast Recovery
After Fast Retransmit, half cwnd and commence

recovery from this point using linear additive increase
‘primed’ by left over ACKs in pipe.

1919Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

ModifiedModified Slow StartSlow Start

• With fast recovery, slow start only
occurs:
–At cold start
–After a coarse-grain timeout

• This is the difference between
TCP Tahoe and TCP Reno!!

2020Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

TCP Congestion Control

Congestion
window

10

5

15

20

0

Slow
start

Congestion
avoidance

Congestion occurs

Threshold

Fast recovery
would cause a
change here.

Round-trip timesCopyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

2121
Figure 7.63

Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

TCP Congestion ControlTCP Congestion Control

2222Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Adaptive RetransmissionsAdaptive Retransmissions
RTT:: Round Trip Time between a pair of

hosts on the Internet.
• How to set the TimeOut value?

– The timeout value is set as a function of
the expected RTT.

– Consequences of a bad choice?

2323Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Original AlgorithmOriginal Algorithm

• Keep a running average of RTT and
compute TimeOut as a function of this
RTT.
– Send packet and keep timestamp ts .
– When ACK arrives, record timestamp ta .

SampleRTT = ta - ts

2424Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Original AlgorithmOriginal Algorithm
Compute a weighted average:

EstimatedRTT = EstimatedRTT = αα xx EstimatedRTT + EstimatedRTT +
((11-- αα) x SampleRTT) x SampleRTT

Original TCP spec: αα in range (0.8,0.9)in range (0.8,0.9)

TimeOut = 2 x TimeOut = 2 x EstimatedRTTEstimatedRTT

2525Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Karn/Partidge AlgorithmKarn/Partidge Algorithm

An obvious flaw in the original algorithm:

Whenever there is a retransmission it is
impossible to know whether to associate
the ACK with the original packet or the
retransmitted packet.

2626Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Figure 5.10 Associating the Figure 5.10 Associating the
ACK?ACK?

Sender Receiver

Original transmission

ACK

Retransmission

Sender Receiver

Original transmission

ACK

Retransmission

(a) (b)

2727Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Karn/Partidge AlgorithmKarn/Partidge Algorithm

1. Do not measure SampleRTTSampleRTT when
sending packet more than once.

2. For each retransmission, set TimeOutTimeOut
to double the last TimeOutTimeOut.
{ Note – this is a form of exponential
backoff based on the believe that the
lost packet is due to congestion.}

2828Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Jacobson/Karels AlgorithmJacobson/Karels Algorithm
The problem with the original algorithm is that it did not

take into account the variance of SampleRTT.

Difference = SampleRTT Difference = SampleRTT –– EstimatedRTTEstimatedRTT
EstimatedRTT = EstimatedRTT +EstimatedRTT = EstimatedRTT +

((δδ x Difference)x Difference)
Deviation =Deviation = δδ (|Difference| (|Difference| -- Deviation)Deviation)

where δδ is a fraction between 0 and 1.

2929Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

Jacobson/Karels AlgorithmJacobson/Karels Algorithm
TCP computes timeout using both the mean

and variance of RTT

TimeOut =TimeOut = µµ x EstimatedRTT x EstimatedRTT
++ ΦΦ x Deviationx Deviation

where based on experience µµ = 1= 1 and ΦΦ = 4= 4.

3030Advanced Computer Networks: TCP Congestion ControlAdvanced Computer Networks: TCP Congestion Control

	TCP Congestion Control
	TCP Congestion Control
	AIMD(Additive Increase / Multiplicative Decrease)
	Additive Increase
	Figure 6.8 Additive Increase
	Multiplicative Decrease
	AIMD(Additive Increase / Multiplicative Decrease)
	Figure 6.9 Typical TCPSawtooth Pattern
	Slow Start
	Slow Start
	Figure 6.10 Slow Start
	Slow Start
	Figure 6.11 Behavior of TCPCongestion Control
	Fast Retransmit
	Fast Retransmit
	Figure 6.12 Fast Retransmit
	Figure 6.13 TCP Fast Retransmit Trace
	Fast Recovery
	Modified Slow Start
	TCP Congestion Control
	Adaptive Retransmissions
	Original Algorithm
	Original Algorithm
	Karn/Partidge Algorithm
	Figure 5.10 Associating the ACK?
	Karn/Partidge Algorithm
	Jacobson/Karels Algorithm
	Jacobson/Karels Algorithm

