Synchronous Optical Networks SONET

Telephone Networks {Brief History}

- Digital carrier systems
 - The hierarchy of digital signals that the telephone network uses.
 - Trunks and access links organized in DS (digital signal) hierarchy
 - Problem: rates are not multiples of each other.
- In the 1980's Bellcore developed the Synchronous Optical Network (SONET) standard.
- Previous efforts include: ISDN and BISDN.

FIGURE

starts at 155.52 Mbps. All the standards become compatible at speeds of 155 Mbps.

4

SONET

- **SONET::** encodes bit streams into optical signals propagated over optical fiber. SONET defines a technology for carrying many signals of different capacities through a **synchronous**, flexible, optical hierarchy.
- A bit-way implementation providing end-to-end transport of bit streams.
- All clocks in the network are locked to a **common master clock** so that simple TDM can be used.
- Multiplexing done by **byte interleaving**.
- **SONET** is backward compatible to DS-1 and E-1 and forward compatible to ATM cells.
- Demultiplexing is easy.

SONET

- Transmission links of the telephone network have been changing to **SONET** where rates are arranged in **STS** (Synchronous Transfer Signal) hierarchy.
- The hierarchy is called **SDH** (Synchronous Digital Hierarchy) defined by CCITT.
- It is an ITU standard.

Medium	Signal	circuits	North America	Japan	Europe
T-1 paired cable	DS-1	24	1.5	1.5	2.0
T-1C paired cable	DS-1C	48	3.1		
T-2 paired cable	DS-2	96	6.3	6.3	8.4
T-3 coax, radio, fiber	DS-3	672	45.0	34.0	32.0
Coax, waveguide, radio, fiber	DS-4	4032	274.0		

1.2

TABLE

Digital carrier systems. This is the hierarchy of digital signals that the telephone network uses. Note that the bit rate of a DS-1 signal is greater than 24 times the rate of a voice signal (64 Kbps) because of the additional framing bits required.

Carrier	Signal	Rate in Mbps
00-1	STS-1	51.840
OC-3	STS-3	155.520
OC-9	ST5-9	466.560
OC-12	STS-12	622.080
OC-18	STS-18	933.120
OC-24	STS-24	1244.160
OC-36	STS-36	1866.240
OC-48	STS-48	2488.320

1.3

SONET rates. The rates of multiplexed STS-1 signals are exact multiples; no additional framing bits are used.

TABLE

Networks: SONET

Sec. 20

SONET		SDH	Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912

Figure 2-37. SONET and SDH Multiplex Rates

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.8

Synhcronous Multiplexing in SONET

Incoming STS-1 Frames

Synchronized New STS-1 Frames

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.17

STS-1 SIGNALS ARE **BYTE INTERLEAVED** TO CREATE A **STS-N** SIGNAL BY COMBINING EACH BYTE IN THE VARIOUS DATA STREAMS IN A WAY SUCH THAT EACH BYTE IS IN A UNIQUELY SPECIFIED LOCATION FACILITATING DEMULTIPLEXING.

FIRST ALIGN STS-1 FRAMES

- NEXT BYTE INTERLEAVE TO FORM STS-N SIGNAL
- THE TRANSPORT OVERHEAD IS NOW 3 X N
- THE SPE (SYNCHRONOUS PAYLOAD ENVELOP "DATA") IS NOW N X 87 COLUMNS
- BYTE SEQUENCE IS ROW 1 COLUMN 1 TO ROW 9 COLUMN 90

SONET Architecture

- **SONET** topology can be a mesh, but most often it is a dual ring.
- Standard component of SONET ring is an ADM (Add/Drop Multiplexer)
 - Drop one incoming multiplexed stream and replace it with another stream.
 - Used to make up bi-directional line switching rings.

SONET Ring

(a) Dual ring

(b) Loop-around in response to fault

Leon-Garcia & Widjaja: Communication Networks

Figure 4.12

(a) pre-SONET multiplexing

(b) SONET Add-Drop multiplexing

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.13

Gigabit ATM Applications Over 10 Gb/s SONET Ring

Washington U. St Louis 1995

STE: Section Terminating Equipment, e.g. a repeater

LTE: Line Terminating Equipment, e.g. a STS-1 to STS-3 multiplexer

PTE: Path Terminating Equipment, e.g. an STS-1 multiplexer

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.14

18

The main SONET network elements.

SONET Architecture

Mux = BIM (Byte Interleaved Multiplexer)

Reg = Regenerator

- Boosts power of optical signal
 - Optical signal is **converted to** electrical signal.
 - Amplify electrical signal.
 - Amplified electrical signal **converted back to** optical signal.

MULTIPLEXING HIERAROWY

- SERVICE ADAPTORS MAP VARIOUS SERVICES (VOICE, DATA, VIDEO...) INTO THE PAYLOAD ENVELOPE OF VIRTUAL TRIBUTARIES OR STS-1.
- STS-1 SIGNALS ARE MULTIPLEXED INTO STS-N (BYTE INTERLEAVE SYNCHRONOUS MULTIPLEXER)

MULTIPLEXING LOWER THAN STS-1 DATA RATES INTO BASIC SONET STS-1

- VIRTUAL TRIBUTARY (VT) DEFINED FOR Sub-STS-1 SIGNALS
- GIVEN EACH SPE-1 COLUMN HAS CAPACITY OF 9 rows x 8 bits x 8000 SPE/sec = .576 Mb/s
- VT-6 TRIBUTARY REQUIRES 6.912 / .576 = 12 COLUMNS

SONET HEIRARCHY	Digital Signals	SPE frame columns
28 X DS1	DS3 (44.736 Mb/s)	
VT-6 (6.912 Mb/s)	DS2 (6.312 Mb/s)	12
VT-3 (3.456 Mb/s)	DS1C (3.152 Mb/s)	6
VT-2 (2.304 Mb/s)	CEPT-1 (2.048 Mb/s)	4
VT-1.5 (1.728 Mb/s)	DS1 (1.544 Mb/s)	3
24 TDM/PCM CHANNEL	T1 (1.544 Mb/s)	
1 TDM/PCM CHANNEL	DS0 (64 Kb/s)	

 VIRTUAL TRIBUTARY GROUPS ARE DEFINED TO CONTAIN COMBINATIONS OF VARIOUS VTs SUCH THAT THE TOTAL IS 12 COLUMNS.

$$1 \times VT-6 = 12$$

$$4 \times VT - 1.5 = 12$$

 SEVEN (87/12 col/VT-12) ARE MAPPED INTO 1 STE-1 WITH 1 COLUMN LEFT FOR PATH OVERHEAD AND 2 COLUMNS ARE STUFFED.

SONET Frame

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.15

SONET Frames

SPE straddling SONET Frame

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 4.16

ATM Cells in an STS-3 Frame

An STS-3 frame accommodates 44 ATM cells. No framing bits are provided to delimit the cell boundary.

