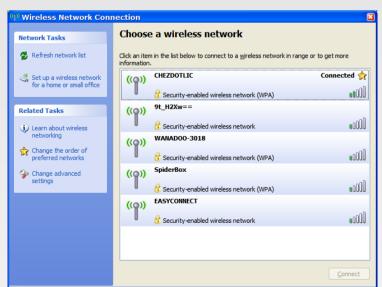
Distributed Dynamic Channel Selection in Chaotic Wireless Networks

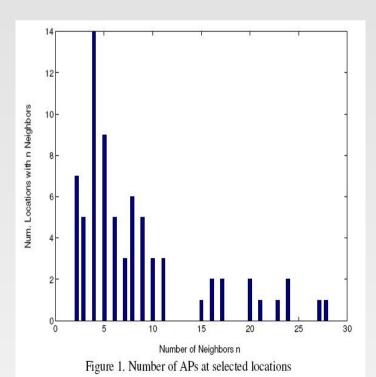
By:

Matthias Ihmig and Peter Steenkiste

Presented by:


James Cialdea and Ken Breeman

Overview


- Wireless networking problem:
 Channel Allocation
- A proposed solution:
 Dynamic Channel Selection
- Proposed algorithm explained.
- Simulations using OPNET
- Conclusions

Problem:

- Wireless networking is popular
 - Many users in contention for a finite amount of bandwidth per channel
 - Most users do not properly configure their devices to maximize throughput
 - Even if they do, the situation can change at any time
- Wireless Channel Selection Issues Include:
 - High density of APs
 - Unpredictable, Dynamic load

CS4514 Networks

Solution:

 Dynamically select channel based on current load conditions

Problems:

- What devices should calculate load in an unmanaged space?
- How should load be calculated?
- How often should load be calculated?
- What is the best way to switch channels on the fly?

Algorithm Overview

- Monitoring Component
 - Monitor load on current channel
- Evaluation Component
 - Compare current channel load against a threshold
 - Trigger switch if this channel is no good
 - Change threshold accordingly
- Channel Switching Component
 - Set up the hardware for new channel

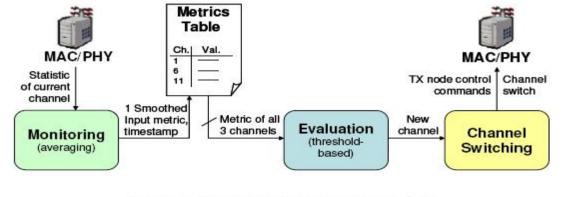
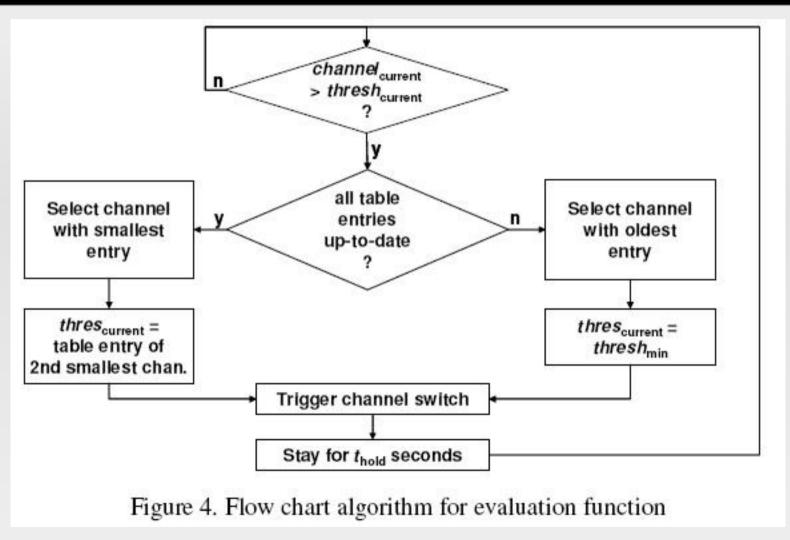
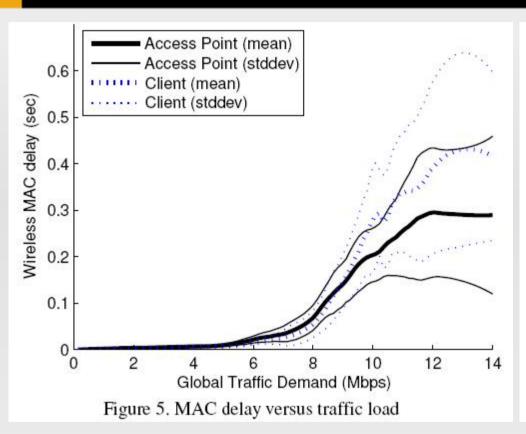



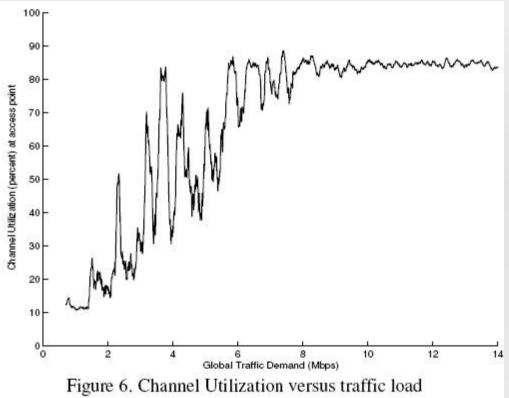
Figure 3. Function modules and data flow

Algorithm

CS4514 Networks

Channel Switching Coordination

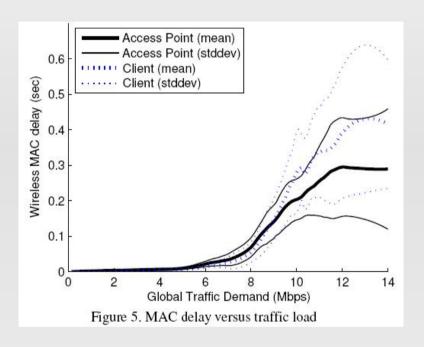

No Coordination


- The AP simply switches channels, expecting the client to loose connectivity and reconnect
- AP-Client Coordination
 - The AP tells the client what channel to switch to and when (SWITCH message)
 - This is supported by 802.11k
- AP-AP Coordination
 - The AP tells other APs what channel it plans to switch to to avoid congestion (HOLD message)

Where To Calculate Network Load

- Because this is an unmanaged, decentralized system:
 - Devices are not distributed across the space evenly
 - No one device can be guaranteed to hear all other devices
 - No one device can be trusted to calculate fairly for all devices
 - All devices must calculate load for their particular space and situation

Which metric?



Calculating Network Load

- Dynamic nature of traffic
 - Dynamic number of clients
 - Dynamic bandwidth demand
- Channel Utilization
 - Many spikes can cause false triggers
- Transmit Queue Length
 - Easy to measure
 - Highly variable many false triggers

- Transmit queue and channel contention time measured
- Most attractive very steady readings

OPNET Simulation

- Utilizes both SWITCH for AP-Client coordination and HOLD for AP-AP coordination
- Comparison:
 - All APs and clients on a single channel
 - All APs and clients on non-overlapping channels
 - APs set to dynamically configure channel and coordinate with clients and other APs

Simulation Result

- Single channel performance was poor as expected
- Manually configured on non-overlapping channels provided the most throughput – as expected
- Dynamic configuration provided about 5% less throughput than the manually configured nonoverlapping channel setup

Simulation Result

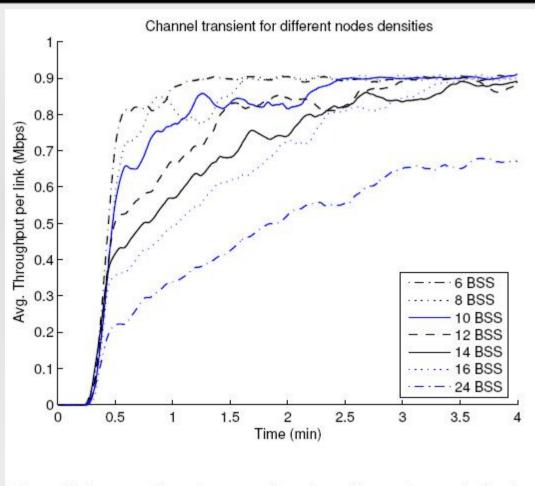


Figure 7. Average throughput as a function of increasing node density

Tuning the Algorithm: Coordination

- Removing Client-AP coordination for legacy clients – reduces performance around the channel switch by a constant factor based on rescan/reconnect time
 - Remove the SWITCH capability
 - About 7% delay was gained and 2% throughput was lost
- Removing AP-AP coordination the HOLD capability – reduces the global throughput by about 3%

Tuning the Algorithm: Parameters

- Load Average
 - The load is calculated using a moving average to negate small changes
 - Shrinking the averaging interval
 - Causes the system to converge on the maximum global throughput quickly
 - Causes excessive channel switching
 - Increasing the averaging interval
 - Slower convergence
 - Less time wasted switching channels
- Same is true of the channel hold time t_HOLD

Tuning the Algorithm: Parameters (contin)

- thres_min
 - The threshold for channel switching
 - Set to about 50% of channel capacity
 - Higher values increase convergence time
 - Lower causes increased number of channel switches

Tuning the Algorithm: Parameters (contin)

CS4514 Networks

Conclusions

- A decentralized algorithm that works.
- Delay based metrics are suitable.
- 95% throughput compared to manual config.
- Handles varying usage.

Works Cited

Article:

 Distributed Dynamic Channel Selection in Chaotic Wireless Networks by Matthias Ihmig and Peter Steenkiste

Questions?

