Transmission Errors

Error Detection and Correction
Transmission Errors

- Transmission errors are caused by:
 - thermal noise (Shannon)
 - impulse noise (e.g., arcing relays)
 - signal distortion during transmission (attenuation)
 - crosstalk
 - voice amplitude signal compression (companding)
 - quantization noise (PCM)
 - jitter (variations in signal timings)
 - receiver and transmitter out of synch.
Error Detection and Correction

- **error detection**: adding enough “extra” bits to deduce that there is an error but not enough bits to correct the error.
- If only error detection is employed in a network transmission, **retransmission** is necessary to recover the frame (data link layer) or the packet (network layer).
- At the data link layer, this is referred to as **ARQ (Automatic Repeat reQuest)**.
Error Detection and Correction

• **error correction** :: requires enough additional (redundant) bits to deduce what the correct bits must have been.

Examples

Hamming Codes

FEC = Forward Error Correction *found in MPEG-4 for streaming multimedia.*
Hamming Codes

codeword :: a legal dataword consisting of \(m \) data bits and \(r \) redundant bits.

Error detection involves determining if the received message matches one of the legal codewords.

Hamming distance :: the number of bit positions in which two bit patterns differ.

Starting with a complete list of legal codewords, we need to find the two codewords whose Hamming distance is the smallest. This determines the Hamming distance of the code.
Error Correcting Codes

<table>
<thead>
<tr>
<th>Char.</th>
<th>ASCII</th>
<th>Check bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1001000</td>
<td>00110010000</td>
</tr>
<tr>
<td>a</td>
<td>1100001</td>
<td>10111001001</td>
</tr>
<tr>
<td>m</td>
<td>1101101</td>
<td>11101010101</td>
</tr>
<tr>
<td>m</td>
<td>1101101</td>
<td>11101010101</td>
</tr>
<tr>
<td>i</td>
<td>1101001</td>
<td>01101011001</td>
</tr>
<tr>
<td>n</td>
<td>1101110</td>
<td>01101010110</td>
</tr>
<tr>
<td>g</td>
<td>1100111</td>
<td>01111001111</td>
</tr>
<tr>
<td>c</td>
<td>0100000</td>
<td>10011000000</td>
</tr>
<tr>
<td>o</td>
<td>1100011</td>
<td>11111000011</td>
</tr>
<tr>
<td>d</td>
<td>1100100</td>
<td>11111001100</td>
</tr>
<tr>
<td>e</td>
<td>1100101</td>
<td>001111000101</td>
</tr>
</tbody>
</table>

Note: Check bits occupy power of 2 slots

Order of bit transmission

Figure 3-7. Use of a **Hamming code** to correct burst errors.
(a) A code with poor distance properties

(b) A code with good distance properties

\[x = \text{codewords} \quad o = \text{non-codewords} \]
Hamming Codes

• To detect d single bit errors, you need a $d+1$ code distance.
• To correct d single bit errors, you need a $2d+1$ code distance.

→ In general, the price for redundant bits is too expensive to do error correction for network messages.

→ Network protocols use error detection and ARQ.
Error Detection

Remember – errors in network transmissions are *bursty*.

- The percentage of damage due to errors is lower.
- It is harder to detect and correct network errors.

- Linear codes
 - Single parity check code :: take k information bits and appends a single check bit to form a codeword.
 - Two-dimensional parity checks
- IP Checksum
- Polynomial Codes

 Example: **CRC (Cyclic Redundancy Checking)**
General Error Detection System

User information → Encoder → Channel → Pattern Checking → Channel output

All inputs to channel satisfy pattern/condition

Deliver user information or set error alarm

Leon-Garcia & Widjaja: Communication Networks

Figure 3.49
Error Detection System Using Check Bits

Information bits

Calculate check bits

Channel

Received information bits

Recalculate check bits

Compare

Received check bits

Information accepted if check bits match

Networks: Transmission Errors
Two-dimensional Parity Check Code

Last column consists of check bits for each row

Bottom row consists of check bit for each column
Two errors

One error

Arrows indicate failed check bits

Three errors

Four errors

Networks: Transmission Errors

Figure 3.53
unsigned short cksum(unsigned short *addr, int count) {
 /*Compute Internet Checksum for “count” bytes
 * beginning at location “addr”.
 */
 register long sum = 0;
 while (count > 1) {
 /* This is the inner loop*/
 sum += *addr++;
 count -=2;
 }

 /* Add left-over byte, if any */
 if (count > 0)
 sum += *addr;

 /* Fold 32-bit sum to 16 bits */
 while (sum >>16)
 sum = (sum & 0xffff) + (sum >> 16) ;

 return ~sum;
}
Polynomial Codes

[LG&W pp. 161-167]

- Used extensively.
- Implemented using *shift-register circuits* for speed advantages.
- Also called CRC (cyclic redundancy checking) because these codes generate check bits.
- **Polynomial codes::** bit strings are treated as representations of polynomials with ONLY binary coefficients (0’s and 1’s).
Polynomial Codes

• The \(k \) bits of a message are regarded as the coefficient list for an information polynomial of degree \(k-1 \).

\[
i(x) = i_{k-1} x^{k-1} + i_{k-2} x^{k-2} + \ldots + i_1 x + i_0
\]

Example: \(1\ 0\ 1\ 1\ 0\ 0\ 0\)

\[
i(x) = x^6 + x^4 + x^3
\]
Polynomial Notation

- Encoding process takes \(i(x) \) produces a codeword polynomial \(b(x) \) that contains information bits and additional check bits that satisfy a pattern.
- Let the codeword have \(n \) bits with \(k \) information bits and \(n-k \) check bits.
- We need a **generator polynomial** of degree \(n-k \) of the form

\[
G = g(x) = x^{n-k} + g_{n-k-1}x^{n-k-1} + \ldots + g_1x + 1
\]

Note – the first and last coefficient are always 1.
CRC Codeword

- k information bits
- n-k check bits
- n bit codeword
Polynomial Arithmetic

Addition:
\[(x^7 + x^6 + 1) + (x^6 + x^5) = x^7 + (1 + 1)x^6 + x^5 + 1\]
\[= x^7 + x^5 + 1\]

Multiplication:
\[(x + 1)(x^2 + x + 1) = x^3 + x^2 + x + x^2 + x + 1 = x^3 + 1\]

Division:
\[
\begin{array}{c c c c c c c c c c c c}
\text{divisor} & x^3 + x^2 + x & \text{dividend} & x^6 + x^5 + x^4 + x^3 \\
\hline
3 & \left(\frac{122}{35}\right) & 105 & \left(\frac{17}{17}\right) \\
\end{array}
\]

\[x^3 + x^2 + x = q(x) \text{ quotient}\]
\[x^5 + x^4 + x^3 = r(x) \text{ remainder}\]
CRC Algorithm

CRC Steps:

1) Multiply $i(x)$ by x^{n-k} (puts zeros in $(n-k)$ low order positions)

2) Divide $x^{n-k}i(x)$ by $g(x)$

\[
x^{n-k}i(x) = g(x) \cdot q(x) + r(x)
\]

3) Add remainder $r(x)$ to $x^{n-k}i(x)$ (puts check bits in the $n-k$ low order positions):

\[
b(x) = x^{n-k}i(x) + r(x)
\]
Information: \((1,1,0,0) \implies i(x) = x^3 + x^2\)

Generator polynomial: \(g(x) = x^3 + x + 1\)

Encoding: \(x^3 i(x) = x^6 + x^5\)

\[
\begin{array}{c}
\underline{x^3 + x^2 + x} \\
\underline{x^3 + x + 1}) x^6 + x^5} \\
\underline{x^6 + x^4 + x^3} \\
\underline{x^5 + x^4 + x^3} \\
\underline{x^5 + x^3 + x^2} \\
\underline{x^4 + x^2} \\
\underline{x^4 + x^2 + x} \\
\underline{x}
\end{array}
\]

Transmitted codeword:
\(b(x) = x^6 + x^5 + x\)

\[b = (1,1,0,0,0,1,0)\]
Frame: 1101011011
Generator: 10011
Message after 4 zero bits are appended: 11010110110000

Diagram showing the calculation of the polynomial code checksum.

Transmitted frame: 11010110111110
Generator Polynomial Properties
for Detecting Errors

1. Single bit errors: \(e(x) = x^i \quad 0 \leq i \leq n-1 \)

If \(g(x) \) has more than one term, it cannot divide \(e(x) \)

2. Double bit errors:
\[
e(x) = x^i + x^j \quad 0 \leq i < j \leq n-1
\]
\[= x^i (1 + x^{j-i})
\]

If \(g(x) \) is primitive, it will not divide \((1 + x^{j-i}) \) for \(j-i \leq 2^{n-k}-1 \)

3. Odd number of bit errors: \(e(1) = 1 \) If number of errors is odd.

If \(g(x) \) has \((x+1)\) as a factor, then \(g(1) = 0 \) and all codewords have an even number of 1s.
Generator Polynomial Properties for Detecting Errors

4. Error bursts of length b: \[0001100 \cdots 001101100 \cdots 0\]

\[e(x) = x^i d(x) \quad \text{where } \deg(d(x)) = L-1\]

\[g(x) \text{ has degree } n-k;\]

\[g(x) \text{ cannot divide } d(x) \text{ if } \deg(g(x)) > \deg(d(x))\]

- \(L = (n-k)\) or less: all errors will be detected
- \(L = (n-k+1): \deg(d(x)) = \deg(g(x))\)
 i.e. \(d(x) = g(x)\) is the only undetectable error pattern,
 fraction of bursts which are undetectable = \(1/2^{L-2}\)
- \(L > (n-k+1): \) fraction of bursts which are undetectable = \(1/2^{n-k}\)
Basic ARQ with CRC

Packet sequence

Transmitter

Information frames

Receiver

Station A

Station B

Control frames

Information Frame

CRC

Information packet

Header

Error-free packet sequence

Copyright ©2000 The McGraw Hill Companies
Leon-Garcia & Widjaja: Communication Networks
Figure 5.8