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TCP Congestion ControlTCP Congestion Control
• Essential strategy :: The TCP host sends 

packets into the network without a reservation 
and then the host reacts to observable events.

• Originally TCP assumed FIFO queuing.
• Basic idea :: each source determines how 

much capacity is available to a given flow in the 
network.

• ACKs are used to ‘pace’ the transmission of 
packets such that TCP is “self-clocking”. 
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AIMDAIMD
(Additive Increase / Multiplicative (Additive Increase / Multiplicative 

Decrease)Decrease)
• CongestionWindow (cwnd) is a variable held by 

the TCP source for each connection.

• cwnd is set based on the perceived level of 
congestion. The Host receives implicit (packet 
drop) or explicit (packet mark) indications of 
internal congestion.

MaxWindow :: min (CongestionWindow , AdvertisedWindow)

EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked)
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Additive IncreaseAdditive Increase
• Additive Increase is a reaction to perceived 

available capacity.
• Linear Increase basic idea:: For each “cwnd’s

worth” of packets sent, increase cwnd by 1 
packet.

• In practice, cwnd is incremented fractionally for 
each arriving ACK.
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increment = MSS x (MSS /cwnd)
cwnd = cwnd + increment



Source Destination

Add one packet
each RTT

Figure 6.8 Additive IncreaseFigure 6.8 Additive Increase
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Multiplicative DecreaseMultiplicative Decrease

* The key assumption is that a dropped packet and the 
resultant timeout are due to congestion at a router or 
a switch.
Multiplicate Decrease:: TCP reacts to a timeout by  
halving cwnd.

• Although cwnd is defined in bytes, the literature often 
discusses congestion control in terms of packets (or 
more formally in MSS == Maximum Segment Size).

• cwnd is not allowed below the size of a single packet.
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AIMDAIMD
(Additive Increase / Multiplicative (Additive Increase / Multiplicative 

Decrease)Decrease)
• It has been shown that AIMD is a necessary

condition for TCP congestion control to be stable.
• Because the simple CC mechanism involves 

timeouts that cause retransmissions, it is important 
that hosts have an accurate timeout mechanism.

• Timeouts set as a function of average RTT and 
standard deviation of RTT.

• However, TCP hosts only sample round-trip time 
once per RTT using coarse-grained clock.
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Slow StartSlow Start
• Linear additive increase takes too long to 

ramp up a new TCP connection from cold 
start.

• Beginning with TCP Tahoe, the slow start 
mechanism was added to provide an initial 
exponential increase in the size of cwnd.

Remember mechanism by: slow start 
prevents a slow start. Moreover, slow start 
is slower than sending a full advertised 
window’s worth of packets all at once.
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SloSloww StartStart
• The source starts with cwnd = 1.
• Every time an ACK arrives, cwnd is 

incremented.
cwnd is effectively doubled per RTT “epoch”.

• Two slow start situations:
At the very beginning of a connection {cold start}.
When the connection goes dead waiting for a 
timeout to occur (i.e, the advertized window goes 
to zero!)
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Source Destination

Slow Start
Add one packet 

per ACK

Figure 6.10 Slow StartFigure 6.10 Slow Start
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Slow StartSlow Start

• However, in the second case the source 
has more information. The current value 
of cwnd can be saved as a congestion 
threshold.

• This is also known as the “slow start 
threshold” ssthresh.
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Figure 6.11 Behavior of TCPFigure 6.11 Behavior of TCP
Congestion ControlCongestion Control



Fast RetransmitFast Retransmit
• Coarse timeouts remained a problem, and Fast 

retransmit was added with TCP Tahoe.
• Since the receiver responds every time a packet 

arrives, this implies the sender will see duplicate 
ACKs.

Basic Idea:: use duplicate ACKs to signal lost packet.

Fast Retransmit
Upon receipt of three duplicate ACKs, the TCP Sender

retransmits the lost packet.
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Fast RetransmitFast Retransmit

• Generally, fast retransmit eliminates about half
the coarse-grain timeouts.

• This yields roughly a 20% improvement in 
throughput.

• Note – fast retransmit does not eliminate all 
the timeouts due to small window sizes at the 
source.
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Figure 6.12 Fast RetransmitFigure 6.12 Fast Retransmit



Figure 6.13 TCP Fast Retransmit TraceFigure 6.13 TCP Fast Retransmit Trace
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TCP Congestion Control
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Fast RecoveryFast Recovery
• Fast recovery was added with TCP Reno.
• Basic idea:: When fast retransmit detects 

three duplicate ACKs, start the recovery 
process from congestion avoidance region 
and use ACKs in the pipe to pace the 
sending of packets.
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Fast Recovery
After Fast Retransmit, half cwnd and commence

recovery from this point using linear additive increase
‘primed’ by left over ACKs in pipe.



ModifiedModified Slow StartSlow Start
• With fast recovery, slow start only 

occurs:
–At cold start
–After a coarse-grain timeout

• This is the difference between 
TCP Tahoe and TCP Reno!!
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TCP Congestion Control
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Adaptive RetransmissionsAdaptive Retransmissions

RTT:: Round Trip Time between a pair of 
hosts on the Internet.

• How to set the TimeOut value?
– The timeout value is set as a function of 

the expected RTT.
– Consequences of a bad choice?
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Original AlgorithmOriginal Algorithm

• Keep a running average of RTT and 
compute TimeOut as a function of this 
RTT.
– Send packet and keep timestamp ts .
– When ACK arrives, record timestamp ta .

SampleRTT = ta - ts
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Original AlgorithmOriginal Algorithm

Compute a weighted average:

EstimatedRTTEstimatedRTT =  =  αα xx EstimatedRTTEstimatedRTT + + 
((11-- αα) x ) x SampleRTTSampleRTT

Original TCP spec: αα in range (0.8,0.9)in range (0.8,0.9)

TimeOutTimeOut = 2 x = 2 x EstimatedRTTEstimatedRTT
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Karn/PartidgeKarn/Partidge AlgorithmAlgorithm

An obvious flaw in the original algorithm:

Whenever there is a retransmission it is 
impossible to know whether to associate 
the ACK with the original packet or the 
retransmitted packet.
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Figure 5.10 Figure 5.10 
Associating the ACK?Associating the ACK?
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Karn/PartidgeKarn/Partidge AlgorithmAlgorithm

1. Do not measure SampleRTTSampleRTT when 
sending packet more than once.

2. For each retransmission, set TimeOutTimeOut
to double the last TimeOutTimeOut.
{ Note – this is a form of exponential 
backoff based on the believe that the 
lost packet is due to congestion.}
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Jaconson/KarelsJaconson/Karels AlgorithmAlgorithm
The problem with the original algorithm is that it did not 

take into account the variance of SampleRTT.

Difference = Difference = SampleRTTSampleRTT –– EstimatedRTTEstimatedRTT
EstimatedRTTEstimatedRTT = = EstimatedRTTEstimatedRTT ++

((δδ x Difference)x Difference)
Deviation =Deviation = δδ (|Difference| (|Difference| -- Deviation)Deviation)

where δδ is a fraction between 0 and 1.
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Jaconson/KarelsJaconson/Karels AlgorithmAlgorithm
TCP computes timeout using both the mean 

and variance of RTT

TimeOutTimeOut == µµ x x EstimatedRTTEstimatedRTT
++ ΦΦ x Deviationx Deviation

where based on experience µµ = 1= 1 and ΦΦ = 4= 4.
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