
TCP TCP
Congestion ControlCongestion Control

Lecture material taken from
“Computer Networks A Systems Approach”,

Third Ed.,Peterson and Davie,
Morgan Kaufmann, 2003.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 11

TCP Congestion ControlTCP Congestion Control
• Essential strategy :: The TCP host sends

packets into the network without a reservation
and then the host reacts to observable events.

• Originally TCP assumed FIFO queuing.
• Basic idea :: each source determines how

much capacity is available to a given flow in the
network.

• ACKs are used to ‘pace’ the transmission of
packets such that TCP is “self-clocking”.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 22

AIMDAIMD
(Additive Increase / Multiplicative (Additive Increase / Multiplicative

Decrease)Decrease)
• CongestionWindow (cwnd) is a variable held by

the TCP source for each connection.

• cwnd is set based on the perceived level of
congestion. The Host receives implicit (packet
drop) or explicit (packet mark) indications of
internal congestion.

MaxWindow :: min (CongestionWindow , AdvertisedWindow)

EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked)

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 33

Additive IncreaseAdditive Increase
• Additive Increase is a reaction to perceived

available capacity.
• Linear Increase basic idea:: For each “cwnd’s

worth” of packets sent, increase cwnd by 1
packet.

• In practice, cwnd is incremented fractionally for
each arriving ACK.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 44

increment = MSS x (MSS /cwnd)
cwnd = cwnd + increment

Source Destination

Add one packet
each RTT

Figure 6.8 Additive IncreaseFigure 6.8 Additive Increase

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 55

Multiplicative DecreaseMultiplicative Decrease

* The key assumption is that a dropped packet and the
resultant timeout are due to congestion at a router or
a switch.
Multiplicate Decrease:: TCP reacts to a timeout by
halving cwnd.

• Although cwnd is defined in bytes, the literature often
discusses congestion control in terms of packets (or
more formally in MSS == Maximum Segment Size).

• cwnd is not allowed below the size of a single packet.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 66

AIMDAIMD
(Additive Increase / Multiplicative (Additive Increase / Multiplicative

Decrease)Decrease)
• It has been shown that AIMD is a necessary

condition for TCP congestion control to be stable.
• Because the simple CC mechanism involves

timeouts that cause retransmissions, it is important
that hosts have an accurate timeout mechanism.

• Timeouts set as a function of average RTT and
standard deviation of RTT.

• However, TCP hosts only sample round-trip time
once per RTT using coarse-grained clock.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 77

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time (seconds)

70

30
40
50

10

10.0

Figure 6.9 Typical TCPFigure 6.9 Typical TCP
SawtoothSawtooth PatternPattern

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 88

Slow StartSlow Start
• Linear additive increase takes too long to

ramp up a new TCP connection from cold
start.

• Beginning with TCP Tahoe, the slow start
mechanism was added to provide an initial
exponential increase in the size of cwnd.

Remember mechanism by: slow start
prevents a slow start. Moreover, slow start
is slower than sending a full advertised
window’s worth of packets all at once.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 99

SloSloww StartStart
• The source starts with cwnd = 1.
• Every time an ACK arrives, cwnd is

incremented.
cwnd is effectively doubled per RTT “epoch”.

• Two slow start situations:
At the very beginning of a connection {cold start}.
When the connection goes dead waiting for a
timeout to occur (i.e, the advertized window goes
to zero!)

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1010

Source Destination

Slow Start
Add one packet

per ACK

Figure 6.10 Slow StartFigure 6.10 Slow Start

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1111

Slow StartSlow Start

• However, in the second case the source
has more information. The current value
of cwnd can be saved as a congestion
threshold.

• This is also known as the “slow start
threshold” ssthresh.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1212

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

70

30
40
50

10

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1313

Figure 6.11 Behavior of TCPFigure 6.11 Behavior of TCP
Congestion ControlCongestion Control

Fast RetransmitFast Retransmit
• Coarse timeouts remained a problem, and Fast

retransmit was added with TCP Tahoe.
• Since the receiver responds every time a packet

arrives, this implies the sender will see duplicate
ACKs.

Basic Idea:: use duplicate ACKs to signal lost packet.

Fast Retransmit
Upon receipt of three duplicate ACKs, the TCP Sender

retransmits the lost packet.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1414

Fast RetransmitFast Retransmit

• Generally, fast retransmit eliminates about half
the coarse-grain timeouts.

• This yields roughly a 20% improvement in
throughput.

• Note – fast retransmit does not eliminate all
the timeouts due to small window sizes at the
source.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1515

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Fast Retransmit

Based on three
duplicate ACKs

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1616

Figure 6.12 Fast RetransmitFigure 6.12 Fast Retransmit

Figure 6.13 TCP Fast Retransmit TraceFigure 6.13 TCP Fast Retransmit Trace

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

70

30
40
50

10

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1717

TCP Congestion Control

Congestion
window

10

5

15

20

0

Slow
start

Congestion
avoidance

Congestion occurs

Threshold

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1818

Round-trip timesCopyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks Figure 7.63

Fast RecoveryFast Recovery
• Fast recovery was added with TCP Reno.
• Basic idea:: When fast retransmit detects

three duplicate ACKs, start the recovery
process from congestion avoidance region
and use ACKs in the pipe to pace the
sending of packets.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 1919

Fast Recovery
After Fast Retransmit, half cwnd and commence

recovery from this point using linear additive increase
‘primed’ by left over ACKs in pipe.

ModifiedModified Slow StartSlow Start
• With fast recovery, slow start only

occurs:
–At cold start
–After a coarse-grain timeout

• This is the difference between
TCP Tahoe and TCP Reno!!

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2020

TCP Congestion Control

Congestion
window

10

5

15

20

0

Slow
start

Congestion
avoidance

Congestion occurs

Threshold

Fast recovery
would cause a
change here.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2121

Round-trip timesCopyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks Figure 7.63

Adaptive RetransmissionsAdaptive Retransmissions

RTT:: Round Trip Time between a pair of
hosts on the Internet.

• How to set the TimeOut value?
– The timeout value is set as a function of

the expected RTT.
– Consequences of a bad choice?

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2222

Original AlgorithmOriginal Algorithm

• Keep a running average of RTT and
compute TimeOut as a function of this
RTT.
– Send packet and keep timestamp ts .
– When ACK arrives, record timestamp ta .

SampleRTT = ta - ts

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2323

Original AlgorithmOriginal Algorithm

Compute a weighted average:

EstimatedRTTEstimatedRTT = = αα xx EstimatedRTTEstimatedRTT + +
((11-- αα) x) x SampleRTTSampleRTT

Original TCP spec: αα in range (0.8,0.9)in range (0.8,0.9)

TimeOutTimeOut = 2 x = 2 x EstimatedRTTEstimatedRTT

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2424

Karn/PartidgeKarn/Partidge AlgorithmAlgorithm

An obvious flaw in the original algorithm:

Whenever there is a retransmission it is
impossible to know whether to associate
the ACK with the original packet or the
retransmitted packet.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2525

Figure 5.10 Figure 5.10
Associating the ACK?Associating the ACK?

Sender Receiver

Original transmission

ACK

Retransmission

Sender Receiver

Original transmission

ACK

Retransmission

(a) (b)

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2626

Karn/PartidgeKarn/Partidge AlgorithmAlgorithm

1. Do not measure SampleRTTSampleRTT when
sending packet more than once.

2. For each retransmission, set TimeOutTimeOut
to double the last TimeOutTimeOut.
{ Note – this is a form of exponential
backoff based on the believe that the
lost packet is due to congestion.}

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2727

Jaconson/KarelsJaconson/Karels AlgorithmAlgorithm
The problem with the original algorithm is that it did not

take into account the variance of SampleRTT.

Difference = Difference = SampleRTTSampleRTT –– EstimatedRTTEstimatedRTT
EstimatedRTTEstimatedRTT = = EstimatedRTTEstimatedRTT ++

((δδ x Difference)x Difference)
Deviation =Deviation = δδ (|Difference| (|Difference| -- Deviation)Deviation)

where δδ is a fraction between 0 and 1.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2828

Jaconson/KarelsJaconson/Karels AlgorithmAlgorithm
TCP computes timeout using both the mean

and variance of RTT

TimeOutTimeOut == µµ x x EstimatedRTTEstimatedRTT
++ ΦΦ x Deviationx Deviation

where based on experience µµ = 1= 1 and ΦΦ = 4= 4.

Computer Networks: TCP Congestion ControlComputer Networks: TCP Congestion Control 2929

	TCP Congestion Control
	TCP Congestion Control
	AIMD(Additive Increase / Multiplicative Decrease)
	Additive Increase
	Figure 6.8 Additive Increase
	Multiplicative Decrease
	AIMD(Additive Increase / Multiplicative Decrease)
	Figure 6.9 Typical TCPSawtooth Pattern
	Slow Start
	Slow Start
	Figure 6.10 Slow Start
	Slow Start
	Figure 6.11 Behavior of TCPCongestion Control
	Fast Retransmit
	Fast Retransmit
	Figure 6.12 Fast Retransmit
	Figure 6.13 TCP Fast Retransmit Trace
	Fast Recovery
	Modified Slow Start
	Adaptive Retransmissions
	Original Algorithm
	Original Algorithm
	Karn/Partidge Algorithm
	Figure 5.10 Associating the ACK?
	Karn/Partidge Algorithm
	Jaconson/Karels Algorithm
	Jaconson/Karels Algorithm

