13. Given the internet pictured below with a propagation speed of $200 \mathrm{~m} / \mathrm{microsec}$ on the packet-switched WAN and $150 \mathrm{~m} /$ microsec through the 1OBASE-T LAN and:
nodes A-D are spaced on the WAN as shown with 1 Gbps links between nodes. Assume processing time for nodes \mathbf{A}, \mathbf{B} and \mathbf{D} is $\mathbf{0}$ and that processing time for node \mathbf{C} is 20 ms .

Nodes C, 1-4 are all 100 m from the 10BASE-T hub.
Assume a packet $=$ frame $=1250$ bytes on this internet.
How long will it take to send a packet from node 4 to node A in the situation that when the packet arrives at node B there are 2 packets in front of it waiting in a queue to go to node A and 2 packets waiting in a queue to go to node D. Assume there is no other traffic on the LAN and the WAN. List ANY assumptions you make and show ALL work to get some partial credit.

packet from 4 to C :

$$
\mathrm{PD}=\mathrm{QD}=0
$$

10^{4} bits

packet from C to B :

$$
\begin{aligned}
& \mathrm{QD}=0 \\
& P D=0.020 \mathrm{sec}=\quad 20000 \text { microsec. } \\
& 10^{4} \text { bits }
\end{aligned}
$$

$$
\begin{aligned}
& 10^{9} \text { bits/ sec. } \\
& 15000 \text { m }
\end{aligned}
$$

$$
=20085 \text { microsec. }
$$

packet from B to A :
$P D=0$

PT $=\begin{gathered}5000 \mathrm{~m} \\ 200 \mathrm{~m} / \mathrm{mic} \text {------------ }\end{gathered} \quad=0.000025 \mathrm{sec}=25$ microsec.
$=\quad 55$ microsec.

Total Delay

packet from 4 to C: $\quad 1001 \begin{aligned} & 1 \\ & --\mathrm{a}\end{aligned}$ microsec.
packet from C to B :
packet from B to A :
20085
55
$=$
Total 2114
microsec.
microsec.
1 1

