The Internet and HTTP and DNS Examples
The Internet and an internet

[LG&W pp.26-28]

An internet :: involves the interconnection of multiple networks into a single large networks.

The Internet :: refers to the successor to ARPANET.

IP (the Internet Protocol) :: provides connectionless transfer of packets across an internet.
An internet

G = gateway

Networks: HTTP and DNS
The Internet

• Provides a name space to refer to machines connected to the Internet (e.g. chablis.cs.wpi.edu).
• The name space is hierarchical, but is only administrative and not used in network routing operations.
• DNS (Domain Name Service) provides automatic translation of names to addresses.
OSI versus TCP/IP

<table>
<thead>
<tr>
<th>OSI</th>
<th>TCP/IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Application</td>
</tr>
<tr>
<td>6</td>
<td>Presentation</td>
</tr>
<tr>
<td>5</td>
<td>Session</td>
</tr>
<tr>
<td>4</td>
<td>Transport</td>
</tr>
<tr>
<td>3</td>
<td>Network</td>
</tr>
<tr>
<td>2</td>
<td>Data link</td>
</tr>
<tr>
<td>1</td>
<td>Physical</td>
</tr>
</tbody>
</table>

Figure 1-21. The TCP/IP reference model.
TCP/IP Architectural Model

DCC 6th Ed., W. Stallings Figure 1.9

Networks: HTTP and DNS
Networks: HTTP and DNS

Figure 2.12

Network Interface 1

Network Interface 2

Network Interface 3

HTTP
SMTP
DNS
RTP

TCP
UDP

IP

Leon-Garcia & Widjaja: Communication Networks

Copyright ©2000 The McGraw Hill Companies

Networks: HTTP and DNS

WPI
IP

• Currently IP provides *best-effort service.*
 – packets may be lost (i.e., IP is unreliable).

• General IP design philosophy
 – Keep internal operations simple by relegating complex functions to the *edge* of the subnet.
 – IP can operate over *any network*
 – This design allows IP to scale!!!
 – *The end-to-end mechanisms are responsible for recovery of packet losses and congestion control.*
IPv4

- Uses *hierarchical address space* with location information embedded in the structure.

 Network ID Host ID

 4 bytes

- IP address is usually expressed in *dotted-decimal notation* (e.g., 128.100.11.56).
Applications and Layered Architectures

[LG&W pp.43-49]

- In the 1970’s vendor companies (IBM and DEC) developed proprietary networks with the common feature of grouping communication functions into related and manageable sets called layers.

network architecture :: a set of protocols that specify how every layer is to function.
Advantages of Layering Design

• Provides an abstraction for functional locality.
• Simplifies the design process.
• Led to flexibility in modifying and developing network architectures.
• Accommodates incremental changes.
Layering Examples

Client/server relationship

– Server process waits for incoming requests by listening to a port.
– Client process makes requests as required.
– Server process provides responses to these requests.
– The server process usually runs in the background as a daemon (e.g. httpd is the server daemon for HTTP).
HTTP Example

- **HTTP** (HyperText Transfer Protocol) specifies rules by which the client and the server interact so as to retrieve a document.
- The protocol assumes the client and the server can exchange messages directly.
- The client software needs to set up a two-way connection prior to the HTTP request.
HTTP Client/Server Interaction

HTTP client

Request

Response

HTTP server

Networks: HTTP and DNS

Leon-Garcia & Widjaja: Communication Networks

Figure 2.1

Copyright ©2000 The McGraw Hill Companies
Figure 2.2

HTTP client

Ephemeral

Port #

TCP

GET 80, #

HTTP server

Port 80

TCP

#, 80 STATUS

Networks: HTTP and DNS
The user clicks on a link to indicate which document is to be retrieved.

The browser must determine the address that contains the document. It does this by sending a query to its local name server.

Once the address is known the browser establishes a connection to the specified machine, usually a TCP connection. In order for the connection to be successful, the specified machine must be ready to accept TCP connections.

The browser runs a client version of HTTP, which issues a request specifying both the name of the document and the possible document formats it can handle.

The machine that contains the requested document runs a server version of HTTP. It reacts to the HTTP request by sending an HTTP response which contains the desired document in the appropriate format.

The TCP connection is then closed and the user may view the document.
Retrieving a document from the Web

1. User selects document
2. Network software of client locates the server host and establishes a two-way connection.
3. HTTP client sends message requesting document.
4. HTTP daemon listening on TCP port 80 interprets a message.
5. HTTP daemon send a result code and a description of the information that the client will receive

GET /infocom/index.html HTTP/1.0

HTTP/1.1 200 OK
Server: Apache/1.3.23 (Unix)
Content-Length: 414
Content-Type: text/html
6. HTTP daemon reads the file and sends the requested file through the TCP port.

7. Text is displayed by client browser, which interprets the HTML format.

8. HTTP daemon disconnects the connection after the connection is idle for some timeout period.

```html
<html>
<head>
<title>Infocom ’99</title>
<font face =“Arial”>The Future Now …</font>
</head>
```
DNS Query and Response

1. Application requests name to address translation.
2. Resolver composes query message.
3. Resolver send UDP datagram encapsulating the query message.
4. DNS server looks up address and prepares response.
5. DNS sends UDP datagram encapsulating the response message.

Header: OPCODE=SQUERY
Question:
QNAME= tesla.comm.toronto.edu.,
 QCLASS=IN, QTYPE=A

HEADER: OPCODE=SQUERY, RESPONSE
AA
Question: QNAME=
Tesla.comm.toronto.edu.,
 QCLASS=IN, QTYPE=A
Answer: telsa.cmm.toronto.edu.
 86400 IN A 128.100.11.56