CS4514 Computer Networks Program 3 BO1

Programming Assignment 3 (60 points)
Due: 9 a.m., Friday, December 14, 2001

Concurrent Server Using Go Back N

This assgnment builds on the experiences of Program 2 that implemented a smple client-server protocol on top
of an emulated physicd layer. This program is to be completed in two person teams or by individuas. At this
stage of the course, the only single person projects that are encouraged are Situations where your partner has
dropped out of the course.

The assignment is to build a concurrent server that handles requests from two or more clients. [Unix socket
calls are used with TCP as the physical layer for transmitting between clients and a concurrent
server]. Both the clients and the server will have a smdl application layer protocol that defines the interaction
between client and server. Furthermore, the architecture includes a smal network layer to ded with the
conversion from messages-to-packets-to-frames. Note: Some of the data link layer issues from Program 2 can
be smplified in Program 3.

The command linefor the dient programis client scriptnum

where
scriptnum isan input parameter that indicates (indirectly) which dient thisis.

Hence the command client scriptl starts up client 1 and client script2 starts up client2.
Application Layer

The client application process read its "scripted actions' from the file scripti.txt. That is, dientl readsfrom
scriptl.txt and client2 read from script2.txt

Each client application process sends requests (one at a time) to the server application process of the
form:
command number message

where

command = r indicates read a message from the server
q indicates quit the conversation and close the client connection
w indicates write a message to the server

{r, wand q are ASCII characters}

number isaninteger between 1 and 12 indicating the location of the message in the server database

CS4514 Computer Networks Program 3 BO1

message isatext message. The maximum size of a message is 400 bytes.

The server application process begins by reading into memory the origina database of 12 messages from the
input file serverbase.txt. The server gpplication process handles client gpplication requests to read or write a
message from/to the database.

When a new client connects to the concurrent server, the server will fork a child process to handle al
interactions with that client. The server child process begins with a fresh copy of the origind database. The
server child process responds to the client’ s requests using the child's copy of the database.

When the client gpplication issues a read request, the server child process sends a copy of the requested
message back to the client.

Read Example

client sendsmessage r 6
server child extracts message 6 from its copy of the database and sends it back to the client.

When the client application issues a write request, the server child process overwrites the received messagein
the correct place in the child's copy of the database. The server must send back aresponse

message to the client to indicate that the write request has been completed.

Write Example

client sendsthemessagee w 4 Duke Blue Devils— 2001 National Champs!
server child overwrites message 4 in the child’ s database with the text:

Duke Blue Devils— 2001 National Champs!

Thus, each server child process maintains a separate copy of the database for the client it is serving.

Quit Example

When the server receives aquit message from the client, the server child process prints out the database to the
appropriate serveri.log file (where i is the number of the client). See the physical layer below for how the
server knows which file to write out. The server child then sends a response to the client before

terminating the child process. Note: You need a*“clean” way to terminate the server.

The client gpplication process sends a new command to the server gpplication process after it receives a
message back from the server or after it receives a response message from a write command.

Network L ayer

CS4514 Computer Networks Program 3 BO1

The network layer receives the messages from the gpplication layer and converts the message into packets. The
maximum size of a packet for this assgnment is 48 bytes. Packets are sent to the data link layer to be
converted to frames for transmission.

The network layer aso receives packets from the data link layer. It reassembles the packets into a message to
send to the gpplication layer. Note: the network layer will need to have a mechanism to deter mine the
last packet in a message.

Data Link Layer

The data link layer receives packets from the network layer, creates frames, and sends frames to the physica
layer for transmisson. The data link layer dso recaives tranamitted frames from the physica layer, extracts the
payload, reassembles packets, and forwards packets to the network layer. The maximum sze for the frame
payload is 30 bytes. You must design the “overhead” bytes of the frame to implement a Go Back N diding
window protocol. If it smplifies your task, framing bytes and byte stuffing are not necessary for assgnment 3.
However, if it easier to keep these functions in this assignment that is fine. Asin program 2, your
design needs to include an error-detection byte. Your design will need to include sequence numbers in the
frames and a mechanism for handling ACKs The minimum frame Sze is your choice, and it is your design
decison whether to piggyback ACKs or send separate ACK frames. Due to the request/r esponse nature of
the gpplication layer, ACK timers are not necessary for this assgnmen.

The god of this assgnment is to implement a Go Back N diding window scheme at the data link layer. For
full credit you must implement a sending window size of four frames or higher. This requires timers on both the
client and server 9de. If you are short on time or run into problems, you should fal back to implementing a
one-hit diding window with asingle timer on both sdes of the connection.

Client Process Flow

Each client will cal the physica layer to establish a connection to the concurrent server. The data link layer will
then get a packet from the network layer, put together a frame and give it to the physicd layer to send. The
datalink layer flow will then depend on events coming from the network layer, the current availability within the
diding window, and events coming from the physical layer. The dlient process will terminate when the response
message to the quit message is received at the client application layer.

Flow of Server Child Process

Each data link layer server child process waits for frames from the physica layer and passes packets up to the
network layer. Smilar to the client Sde, the flow of the server data link layer depends on whether there istraffic
from the server to be sent back to the client (either frames with packets or ACK frames).

Each data link client records sgnificant eventsin a log file clienti.log. Each datalink layer server child records
ggnificant events in a log file serveri.log. Significant eventsinclude: packet sent, frame sent, frame resent, ACK

CS4514 Computer Networks Program 3 BO1

sent, ACK resent, frame received successfully, frame received in error, ACK received successfully, ACK
received in error, duplicate frame, and timer expires. For logging purposes identify the packet and the sequence
number of each frame for each event. Begin counting packets and frames at 1.

Physical Layer

The physical layer uses Unix sockets to send the congtructed frames as actuad TCP messages between the
clients and the concurrent server. When the client physica layer first establishes a connection to the concurrent
sarver, it must send one TCP message to the server child process to identify itsdf (i.e., the client with input
parameter scriptl sends a message containing clientl to the server child process). This tells the server child
where to print out the final database.

Smulating Errors

Force every 5th frame sent by each dlient to bein error by flipping any single bit in the error-detection byte prior
to transmisson. Force every 11t frame sent by each server child to be in eror usng the same flipping
mechanism. (i.e, frames 5, 10, 15, ... sent by each client will have a transmission error and frames 11, 22, 33,
... sent by each server child will be in error.) Each frame with a forced error should be resent correctly on the
second try.

Hints

[Design] Plan your designin amodular fashion such that if everything is not totally working, you can turnin
an output that shows exactly what isworking. Relaxing the diding window scheme is one option.

[Documentation] Your commented progran must have a specia section to explain the detals of your
specific design decisions. Remember: This a team project and all routines must include specify the
author aspart of the documentation!!

[DEBUG] Include print satements in the various layers while debugging. Y ou should consider some type
of verbose debugging flag that can be turned on and off.

[Performance Timing] You must measure the total execution time of the complete emulated transfer per
client and print thisout in file dlienti.log.

port numbers - Your dients should have unique port numbers and the clients should treet the server port
number like a“wedl-known” port number. {Conceivably, you could register your database server with
the oracle from program 1 and the client processes could get | P address and port number from the
oracle}

CS4514 Computer Networks Program 3 BO1

What to turn in for Assignment 3

The three officid tedts file (scriptl.txt, script2.txt, serverbase.txt) will be made avalable a few days before
the due date. Use turnin to turn in the two source programs client.c and server.c, and the client and server
output files corresponding to running the programs using the TA's test files. The README file must indicate
the working and the non-working partsto receive partial-credit for program 3.

