
CS 4514 Computer Networks Program 1 B01

1

Programming Assignment 1 (30 pts)
Due: 9 a.m. Tuesday, November 13, 2001

Accessing User Services using Dynamic Binding

This assignment serves as an introduction to client-server programming using the TCP/IP
protocols. In this assignment, you will write both a client and a server. Your client and
server will communicate using TCP, and your server may implement any service you
choose. The ground rules are simple: the server reads and writes data to and from the
TCP connection. The server may prompt the client for input, or simply print a random
message. Once you have debugged the server, it executes in the background (even after
you log out) waiting for service requests from a client.

To access a service, the client opens a TCP connection to the server, sends and receives
data, and then closes the connection. Conceptually, the client acts as a pipe between your
terminal and the server, copying data sent by the server to standard output and sending
data read from standard input to the server. The client terminates the connection with the
server when it receives an end-of- file from either the server or standard input.

This scenario omits a key aspect of client-server programming: How does the client find
out where the server is? That is, what transport- level address (Internet address and port
number) should the client connect to?

One solution is to use a name server that dynamically maps service names into their
transport- level addresses. You have access to such a server, called oracle, allowing you
to register the service you provide and advertise it to other students in the class.
Conceptually, the oracle is like the white pages in your phone book. A server registers
the name and transport address of its service in the phone book, and clients use the phone
book to map service names to transport addresses.

When your server starts, the operating system will assign it an unused port number (e.g.,
P) on which it can wait for incoming connection requests. The server then advertises the
availability of its service by sending a short message to the oracle containing the name of
the service (e.g., ``daytime'') together with the transport address (host number and port P).
The oracle server records the name-to-address mapping in its local database.

When a client wishes to connect to a server, it first sends a message containing the
desired service name (e.g., ``daytime'') to the oracle, and the oracle returns a message
with the appropriate transport address. The client then opens a TCP connection to that
service. Exact details for communicating with the oracle are described below.

CS 4514 Computer Networks Program 1 B01

2

Client-Server Overview

Client

The client accepts the following set of commands from standard input:

list

: Send a message to the oracle requesting a listing of all the currently available
services.

connect service [uid]
: Open a connection to the server providing service service. Service is the user-
friendly service name registered with the oracle. An optional argument uid is
used to distinguish between services provided by different users having the same
name. That is, multiple users may register services having the same name.

quit
: terminate the client program.

When the client wishes to connect to a server, it takes the following steps:

1. Contact the oracle to locate the transport-level address (host name and port number)

of the server you are seeking.

2. Open a TCP connection to this server supplying the desired service.

3. Copy standard input to the server and copy all data sent by the server to standard
output.

4. After receiving an end-of-file from either standard input or the TCP connection, close

the TCP connection. Note: if your client receives an end-of- file from standard input,
it should terminate the connection to the server, but should continue reading
additional commands from standard input because the user may want to connect to
another service (see clearerr(3)).

Server

The server takes the following steps when making a service available:

1. Create a TCP socket (similar to a UNIX file descriptor --- see socket(2) .)

2. Bind the socket to a sockaddr_in structure with family AF_INET, port number 0, and
address INADDR_ANY. This directs the Unix kernel to accept TCP connection
requests from any machine (INADDR_ANY) in the Internet, and specifying a port
number of 0 (indicating ``don't care'') directs the kernel to allocate an unused port
number (see bind(2)).

CS 4514 Computer Networks Program 1 B01

3

3. Extract the port number allocated in the previous step (see getsockname(2)), and
fetch the Internet address of the host on which your server resides (see
gethostname(2) and gethostbyname(3). Fill in the appropriate fields in the om
structure (described below) and register the service with oracle.

4. Specify the backlog of incoming connection requests you are willing to tolerate (see

listen(2)).

5. Finally, wait for a connection request and service it. When you have serviced the

request, repeat the process by waiting for the next connection attempt (see accept(2),
and close(2)).

 Interacting With the Oracle

 Oracle resides on machine garden at well-known UDP port netoracle. All
communication with oracle is through UDP messages containing a structure called an om
(for ``oracle message'', pronounced ``ohhmm''), whose definition can be found in the file
oracle.h in /cs/cs4514/pub/lib . The file is reproduced below:

define luid 16
define cchMaxServ 10
define cchMaxDesc 40
define verCur 'C'

enum cmd {
 cmdErr, /* An error occurred. See sbDesc for details */
 cmdGet, /* Get the address of a service */
 cmdAckGet, /* ACK for cmdGet message */
 cmdEnd, /* Last response to a cmdGet message */
 cmdPut, /* Register a new service */
 cmdAckPut, /* ACK for cmdPut message */
 cmdClr, /* Unregister a service */
 cmdAckClr /* ACK for cmdClr message */
};

struct om { /* oracle message */
 char ver; /* version number of this structure */
 enum cmd cmd; /* command/reply code */
 char sbDesc[cchMaxDesc]; /* description of service (or error reply) */
 char uid[luid]; /* user id (login id) of requester/provider */
 char sbServ[cchMaxServ]; /* name of service requested/provided */
 struct sockaddr_in sa; /* socket addr where service is available */
 unsigned long ti; /* time of registration */
};
define lom (sizeof (struct om))

CS 4514 Computer Networks Program 1 B01

4

Locating a Service

To find a service, your client program fills in the fields of the om structure as follows:

ver

: Always verCur in all messages.
 cmd

: cmdGet .
 uid

: The Unix user id of the user offering the service. If the client doesn't care which
uid to use, it sets this field to the NULL string (NULL character in first byte).

 sbServ
: The name of the service being searched for (filled in by the client). To get a
listing of all available services, set sbServ to the NULL string (NULL character in
first byte).

In response to a cmdGet message, oracle returns two or more messages. Response
messages have a cmd type of cmdAckGet, and the end of cmdAck responses is signaled by
a cmdEnd message. CmdEnd messages do not contain the name of a service; they simply
signal the end of the last response. If only one service matches the client's request, the
server will return two messages: a cmdAckGet, followed by a cmdEnd. Each cmdAck
message contains the following fields:

sbDesc

: A sentence describing the service. Your server uses this field when registering a
service, and the oracle returns it in response to cmdGet queries. When locating a
service, the field should contain all zeros.

 uid
: The user id providing the service (e.g, ``rek'')

 sbServ
 : The name of the service (e.g., ``daytime'').

 sa
: The transport address at which the service resides.

 ti
: The time at which the service was registered.

Registering a Service with Oracle

When a server wishes to register a service with the oracle, it sends an om message with
the following fields:

 cmd

: cmdPut, to register a service.

CS 4514 Computer Networks Program 1 B01

5

 uid
: The login id of the user registering the service (see getuid(2) and getpwent(3)).

 sbServ
: One word name of the service (e.g., ``daytime'').

 sbDesc
: A brief description of the service.

 sa
: The transport level address at which the server can be reached.

In response to a cmdPut message, oracle returns a message of type cmdAckPut if the
registration succeeds. In the case of errors, the oracle returns a message of type cmdErr,
and sets the field sbDesc to contain a short explanation of the error.

Exchanging Datagrams with the Oracle

1. Create a UDP socket (see socket(2)).

2. Get the Internet address and port number of the oracle (see gethostbyname(3) and
getservbyname(3)).

3. Open a UDP connection to the oracle (see connect(2)).

4. Send an om message of the appropriate type to the oracle (see send(2)).

5. Wait for an om reply from the oracle (see recv(2)).

Assignment Objective

The basic objective of the assignment is to build a client that can obtain a list of services
from the oracle server and connect to a simple service (one that just returns output such
as daytime). Your server must register itself with the oracle server and return
information when a client connects to it.

Additional Work

Completion of the basic objectives is worth 20 of the 30 points for the assignment. For
the additional points of the project, your client will need to be able to handle connecting
to multiple services within a session (in a serial manner, not in parallel). Your client
should also work well both with services that require interaction (both input and output)
as well as simple services just producing output. To obtain additional credit for your
server, it must be interactive in that it both requires input and produces output.

CS 4514 Computer Networks Program 1 B01

6

General Advice

Nearly all system calls and library routines return some form of error code if the
operation was not successful. You must check the return value from every routine for
an error code.

The following steps are recommended:

1. Start small. Write a procedure that sends a datagram to the oracle, and receives a

datagram response from the oracle. If you make a mistake, the oracle will return an
om with cmd set to cmdErr, and sbDesc will contain a brief description of the
problem.

2. Write a client that connects to a server registered with the oracle. We will register a

few simple commands (e.g., ``daytime'' and ``finger'') that you can use to test your
client.

3. Once you have tested the client, begin work on the server.

You have about two weeks to complete assignment 1. There are three parts to the project
and you should have each part done in less than one week to stay on schedule. In other
words your client routine should be able to obtain a listing of all services no later than
November 6th.

As an aid to debugging, as well as to trace use of your server, you should print trace
output when connections are made. For example, you might print the host name and port
number of every user that connects to your server, along with the time of the connection.

Requests to the oracle are actually a bit more general than has been described so far.
Regular expressions can be used as service names or user ids to effect a kind of ``wild-
card search'' for services. For example, specifying a service name of ``.*'' matches all
services. Specifying a user name of ``...'' matches all services provided by users with
three-character ids. The format of regular expressions is the same as that of ed(1) .

Use your imagination and creativity in designing server programs. ``Neat'' servers are
popular for testing by clients written by your peers.

The following library procedures and system calls will be helpful: clearerr(3) ,
gethostname(2) , listen(2) , close(2) , getpwent(3) , getuid(2) , send(2) , recv(2) ,
getservbyname(3), gethostbyname(3), gethostbyaddr(3), getsockname(2), bind(2),
socket(2), connect(2), accept(2) , listen(2) and select(2) .

For more information on how the Unix networking-related library routines and system
calls, see the book Unix Networking, which explains how to use the Unix library routines.

