
CS2303 Systems Programming Concepts C14

 1

Program 2 38 Points

Due: February 3, 2014 at 11:59 p.m.

Motion Collision Simulation using Arrays in C

This assignment emphasizes the use of arrays in C and provides practice with manipulating subscripts and

abstracting with two and three-dimensional arrays. You may use structs in this assignment but it is possible to

complete this program successfully only using arrays. Moreover, since this assignment is being done early in

the course, students can keep the playing field arrays and other player attribute data structures as global

variables. However, this does NOT preclude the expectation that the control structure of this program consist

of many small functions and routines where appropriate parameters are passed.

Note well – While the program assignment is given with fixed sizes for the playing field and the team sizes,

the expectation is that students will use #define statements such that the program can easily be adapted to

variable sizes by simply changing a few #define statements.

This assignment comes in three versions with differing maximum points:

I. Hardest 38 Points

II. Slightly Easier 35 Points

III. Easiest 30 Points

Each student must choose and indicate in their README file which version of the game they have chosen to

simulate for program 2.

Version I (Hardest Version): Motion Smashball

Your task is to simulate a game between two teams of nine players. The reason for nine players is to facilitate

reasonable printing out of the playing field onto the screen or into an output file.

Smashball is played on a 25 by 25 square field. When printing out game results, be sure to print out the field

with a border around the field.

Main Assignment

1. Game Initialization

a. Use a random number generator to randomly place all the players on both teams in the playing field. If

the random process produces two players starting on the same spot, redraw new random positions such

that all players start at unique locations on the field.

b. Use a random number generator to generate an initial motion direction for each player. The four motion

choices for this assignment are: East, West, North and South. These directions correspond to the

respective movement of each player on the playing field.

CS2303 Systems Programming Concepts C14

 2

2. Playing Smashball

a. Smashball is played in rounds with each remaining player from both teams moving one hop in their

current direction. Alternate turns of the players from both teams such that each remaining player gets one

hop per round using as fair a policy as possible to reduce bias (Explain your turn policy in your

READEME file).

b. Player Elimination: As each player hops to its next spot, the program checks to see if that spot is

currently occupied by a player on the opposing team. If this is the case, the player occupying the spot is

instantly smashed and eliminated from the game and taken off the playing field. The hopping player then

occupies that spot.

c. Hop Boosting: As each player hops to its next spot, the program checks to see if that spot is currently

occupied by a teammate. If this is the case, the hopping player moves again (effectively hopping over any

teammates it encounters).

d. Hop Bouncing: When a player attempts to make its next hop and it currently resides on an edge spot

such that its next hop would result it hopping into a border spot, the player ‘bounces off’ the border by

reversing its direction and making its hop into the first available spot in the opposite direction. For

example, if a player currently residing at the spot identified by row 3, column 25 on the playing field

attempts to hop to the East when its turn to move comes, then this player changes direction to West and

then first attempts to hop into the spot at row 3, column 24. Note – rules b and c also apply to this type of

hop.

3. Ending the Game

Smashball continues for a fixed number of rounds (e.g., 100 rounds) or it terminates early if one of the

teams win. A team wins when all players from the opposing team have been eliminated. If both teams

finish with any surviving players after the fixed number of rounds the game is declared a tie.

Version II (Slightly Easier): Motion Smashball with Teammate Collisions

Everything in Version II of Motion Smashball is the same as above except that rule 2c, hop boosting, is

eliminated and rule 2b is changed to:

2b’. Player Elimination: As each player hops to its next spot, the program checks to see if that spot is

currently occupied by any other player. If this is the case, the player occupying the spot is instantly

eliminated from the game and taken off the playing field. Thus, in this version of Smashball, players can

eliminate their teammates.

Version III (Easiest): Brownian Motion

Version III, titled ‘Brownian Motion’ differs from the previous two versions of the assignment in that there

only exists one team with 25 players. Everything else in Brownian Motion is the same as Version II above

except that steps 1 and 3 are changed to the following:

CS2303 Systems Programming Concepts C14

 3

1. Game Initialization

a. Use a random number generator to randomly place all the players in the playing field. If the random

process produces two players starting on the same position, redraw new random positions such that all

players start on unique spots.

b. Use a random number generator to generate an initial motion direction for each player. The four motion

choices for this assignment are East, West, North and South. These directions correspond to the respective

movement of each player on the playing field.

3. Ending the Game

Brownian Motion continues for a fixed number of rounds (e.g., 100 rounds) or it terminates early if only

ONE player remains.

Program Output

Your output routines need to be designed to produce line oriented output to be sent to the screen or to an

output file for grading analysis.

Your program must include a function that prints out the playing field with the border and the current player

positions. Identify the player positions by printing out a maximum of either two-digit integers or ASCII

strings of length 2. Note - using appropriate integer outputs is acceptable and easier that using strings. An

example of using integer outputs would be to indicate the players on the first team by integers from 11 to 19

and players on the opposing team by integers between 21 and 29. The fancier, but optional, output is to

indicate the players on two teams, say the Patriots versus the Broncos, by indicating a player’s spot on the

field using strings ‘P1’ to ‘P9’ to indicate Patriot players and strings ‘B1 to B9’ to indicate Bronco players.

Your program should include a second print function that prints out a table of the remaining current player

motion directions prior to starting a new round.

Standard Output

To simplify the grading process, standard output consists of:

1. a printout of the playing field showing all the initial players prior to the start of the first round of the game

and a printout of the table(s) showing the initial motion directions of each player.

2. a printout of the playing field showing the position of all the remaining players after the completion of

every 10
th

 round (i.e., after rounds 10, 20, 30, …, 100).

3. a final printout of the playing field showing all surviving players and the round number after the game has

terminated. This should be followed by printed lines (depending on the game simulated) indicating the

CS2303 Systems Programming Concepts C14

 4

winning team or in the case of a tie, a count of the number of surviving players for both teams. If

Brownian Motion ends early, print out a line identifying the lucky Lone Survivor!

Program Development Hints

Remember this program will be graded taking into account good program organization and the use of multiple

functions and routines. It is highly recommended that students utilize a debugger and/or include a

conditional define debug option for numerous print statements that can easily be turned on and off. While

debugging your program, you should print out significant events such as player eliminations or player

bounces.

What to turn in for Program 2

Turn in your assignment using the turnin program on the CCC machines. You should turn in a tarred file that

includes your source code, a make file, a README file and at least two sample output files. The make file

should include the ability to cleanup leftover output and intermediate files between compile and execution

cycles. The README file should provide any information to help the TA or SA run and test your program,

change the playing field size and evaluate your output files for grading purposes. The two sample output files

should show the output from your program for two different playing field sizes.

