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Introduction 

 Survey and TA/SA Introductions 
 Pause to Look Backwards and Forwards 
 Course Objectives 
 Course Operation/Expectations 
 Course Plan and Syllabus 
 Systems Concepts 
 Higher Level Language History 
 ‘Old’ Development Environment 

– C and C++ 

Systems Programming     Introduction 



4 4 

Quick Look Backwards/Forwards 

 Computing Devices 
– From mainframes to PCs to 

  smart phones to ?? 

 Changes in WPI CS Curriculum 

 Instructor 

 Students 
– Expected Background 

– Going Forward 

– Your Future 
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 To expose students to the low level 
systems interface ’grunge’ clearly visible 
in C. 

 To learn to program in C++ by learning 
to program in C first. 

 To further develop the ability to design 
programs with emphasis on the abstract 
view of data structures. 

 To get experience with low level 
implementation of data structures in C. 

CS2303 Course Objectives 
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 To learn the advantages of programming 
in an object-oriented language such as 
C++. 

 To experience programming in the 

Large  

CS2303 Course Objectives 
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Pointers!!  

CS2303 Course Objectives 

Systems Programming     Introduction 



8 8 

 The course web page is an 
essential student asset. 

* Students are responsible for 
all information on web page! 

 5 Required Labs 

 5 Programming Assignments 

 2 Closed Book Exams 

Course Operation/Expectation 
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Course Plan and Syllabus 

 To cover the details of C briskly. 
– Assumes students already have an understanding 

of iteration and conditional constructs. 

– Using only C I/O {grunge as promised!} at first. 

 To introduce data structures in C by doing at 
least one program with structs and call by 
value. 

 To finish up with as much C++ as possible. 

 {Note - reading of the textbook will require 
jumping around during the C portion of the 
course.} 
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Systems Concepts 

 The goal of this programming course is to 
expose the students to places where the 
software and hardware meet or where the 
application interfaces with the operating 
system (OS). 

 A ‘systems viewpoint’ includes resource 
management (CPU and memory), process 
scheduling, concurrency and performance. 

 {But this is too much material for this 
instance of the course!} 
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Systems Performance Viewpoint 

 The assignments include simulation and 
introduce two system performance 
concerns - efficiency and fairness. 

 The other important approach to 
appreciate is the computer scientist 
abstraction concept of insulating 
interfaces from ‘under-the-hood’ 
details (e.g., virtual memory and 
loaders). 
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1.5  Types of Programming Languages 
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 Although assembly-language code is clearer to humans, it’s 
incomprehensible to computers until translated to machine language. 

 To speed the programming process even further, high-level languages 
were developed in which single statements could be written to 
accomplish substantial tasks.  

 High-level languages allow you to write instructions that look almost 
like everyday English and contain commonly used mathematical 
expressions.  

 Translator programs called compilers convert high-level language 
programs into machine language.  

 Interpreter programs were developed to execute high-level language 
programs directly, although more slowly than compiled programs.  

 Scripting languages such as JavaScript and PHP are processed by 
interpreters.  
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Higher Level 
Programming Languages History 

FortranW 1957  COBOL  1959 

Algol 1960 1968 Lisp   1959 

PL1  1964   APL   1962  

PascalW 1970  SNOBOL  1967 

CW   1972   Prolog  1972  

Basic 1975  SchemeW  1975 

C++W  1986   ADA   1983 

JavaW 1995          PythonW     1989 
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C Program Development Environment 

Standard Steps 
1. Edit 

2. Preprocess 

3. Compile 

4. Link 

5. Load 

6. Execute 

Fig. 1.1 | Typical C development environment. 

 
Deitel & Deitel 
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User Memory Protection 

Systems Programming     Introduction 



16 

Virtual Memory 
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Review of Introduction 

 Course Objectives 
 Course Operation/Expectations 
 Course Plan and Syllabus 
 C, data structures, C++ 
 Systems Viewpoint {more later} 
 Program Development Environment 
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