
CS2303 C14
Systems Programming

Concepts

Bob Kinicki

Introduction

Systems Programming

3 3

Introduction

 Survey and TA/SA Introductions
 Pause to Look Backwards and Forwards
 Course Objectives
 Course Operation/Expectations
 Course Plan and Syllabus
 Systems Concepts
 Higher Level Language History
 ‘Old’ Development Environment

– C and C++

Systems Programming Introduction

4 4

Quick Look Backwards/Forwards

 Computing Devices
– From mainframes to PCs to

 smart phones to ??

 Changes in WPI CS Curriculum

 Instructor

 Students
– Expected Background

– Going Forward

– Your Future

Systems Programming Introduction

5 5

 To expose students to the low level
systems interface ’grunge’ clearly visible
in C.

 To learn to program in C++ by learning
to program in C first.

 To further develop the ability to design
programs with emphasis on the abstract
view of data structures.

 To get experience with low level
implementation of data structures in C.

CS2303 Course Objectives

Systems Programming Introduction

6 6

 To learn the advantages of programming
in an object-oriented language such as
C++.

 To experience programming in the

Large

CS2303 Course Objectives

Systems Programming Introduction

7 7

Pointers!!

CS2303 Course Objectives

Systems Programming Introduction

8 8

 The course web page is an
essential student asset.

* Students are responsible for
all information on web page!

 5 Required Labs

 5 Programming Assignments

 2 Closed Book Exams

Course Operation/Expectation

Systems Programming Introduction

9

Course Plan and Syllabus

 To cover the details of C briskly.
– Assumes students already have an understanding

of iteration and conditional constructs.

– Using only C I/O {grunge as promised!} at first.

 To introduce data structures in C by doing at
least one program with structs and call by
value.

 To finish up with as much C++ as possible.

 {Note - reading of the textbook will require
jumping around during the C portion of the
course.}

Systems Programming Introduction

10

Systems Concepts

 The goal of this programming course is to
expose the students to places where the
software and hardware meet or where the
application interfaces with the operating
system (OS).

 A ‘systems viewpoint’ includes resource
management (CPU and memory), process
scheduling, concurrency and performance.

 {But this is too much material for this
instance of the course!}

Systems Programming Introduction

11

Systems Performance Viewpoint

 The assignments include simulation and
introduce two system performance
concerns - efficiency and fairness.

 The other important approach to
appreciate is the computer scientist
abstraction concept of insulating
interfaces from ‘under-the-hood’
details (e.g., virtual memory and
loaders).

Systems Programming Introduction

1.5 Types of Programming Languages

Systems Programming Introduction 12

 Although assembly-language code is clearer to humans, it’s
incomprehensible to computers until translated to machine language.

 To speed the programming process even further, high-level languages
were developed in which single statements could be written to
accomplish substantial tasks.

 High-level languages allow you to write instructions that look almost
like everyday English and contain commonly used mathematical
expressions.

 Translator programs called compilers convert high-level language
programs into machine language.

 Interpreter programs were developed to execute high-level language
programs directly, although more slowly than compiled programs.

 Scripting languages such as JavaScript and PHP are processed by
interpreters.

Copyright © Pearson, Inc. 2013. All Rights Reserved.

13 13

Higher Level
Programming Languages History

FortranW 1957 COBOL 1959

Algol 1960 1968 Lisp 1959

PL1 1964 APL 1962

PascalW 1970 SNOBOL 1967

CW 1972 Prolog 1972

Basic 1975 SchemeW 1975

C++W 1986 ADA 1983

JavaW 1995 PythonW 1989

Systems Programming Introduction

14 14

C Program Development Environment

Standard Steps
1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Fig. 1.1 | Typical C development environment.

Deitel & Deitel

 2007 Pearson Ed -All rights reserved.

Systems Programming Introduction

15

User Memory Protection

Systems Programming Introduction

16

Virtual Memory

Systems Programming Introduction

17 17

Review of Introduction

 Course Objectives
 Course Operation/Expectations
 Course Plan and Syllabus
 C, data structures, C++
 Systems Viewpoint {more later}
 Program Development Environment

Systems Programming Introduction

