

Classes:
A Deeper Look

Systems Programming

 const objects and const member functions

 Composition

 Friendship

 this pointer

 Dynamic memory management

– new and delete operators

 static class members and member functions

Deeper into C++ Classes

Systems Programming Deeper into C++ Classes 2

18.2 const (Constant) Objects and const
Member Functions

 Principle of least privilege
– “allowing access to data only when it is absolutely

needed.”
– Is one of the most fundamental principles of good

software engineering.
– Applies to objects, too.

 const objects
– Keyword const
– Specifies that an object is not modifiable.
– Attempts to modify the object will result in

compilation errors.

Example
– const Time noon (12, 0, 0);
 Systems Programming Deeper into C++ Classes 3

 const (Constant) Objects and const

Member Functions

 const member functions
– Only const member function can be called
for const objects.

– Member functions declared const are not
allowed to modify the object.

– A function is specified as const both in
its prototype and in its definition.

– const declarations are not allowed for
constructors and destructors.

Systems Programming Deeper into C++ Classes 4

Software Engineering Observation 18.2

 A const member function can be
overloaded with a non-const version.
The compiler chooses which
overloaded member function to use
based on the object on which the
function is invoked. If the object is
const, the compiler uses the const
version. If the object is not const,
the compiler uses the non-const
version.

Systems Programming Deeper into C++ Classes 5

 1 // Fig. 21.1: Time.h

 2 // Definition of class Time.

 3 // Member functions defined in Time.cpp.

 4 #ifndef TIME_H

 5 #define TIME_H

 6

 7 class Time

 8 {

 9 public:

10 Time(int = 0, int = 0, int = 0); // default constructor

11

12 // set functions

13 void setTime(int, int, int); // set time

14 void setHour(int); // set hour

15 void setMinute(int); // set minute

16 void setSecond(int); // set second

17

18 // get functions (normally declared const)

19 int getHour() const; // return hour

20 int getMinute() const; // return minute

21 int getSecond() const; // return second

const Example

Systems Programming Deeper into C++ Classes 6

22

23 // print functions (normally declared const)

24 void printUniversal() const; // print universal time

25 void printStandard(); // print standard time (should be const)

26 private:

27 int hour; // 0 - 23 (24-hour clock format)

28 int minute; // 0 - 59

29 int second; // 0 - 59

30 }; // end class Time

31

32 #endif

const Example

Systems Programming Deeper into C++ Classes 7

 1 // Fig. 21.2: Time.cpp

 2 // Member-function definitions for class Time.

 3 #include <iostream>

 4 using std::cout;

 5

 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9

10 #include "Time.h" // include definition of class Time

11

12 // constructor function to initialize private data;

13 // calls member function setTime to set variables;

14 // default values are 0 (see class definition)

15 Time::Time(int hour, int minute, int second)

16 {

17 setTime(hour, minute, second);

18 } // end Time constructor

19

20 // set hour, minute and second values

21 void Time::setTime(int hour, int minute, int second)

22 {

23 setHour(hour);

24 setMinute(minute);

25 setSecond(second);

26 } // end function setTime

const Example

Systems Programming Deeper into C++ Classes 8

27

28 // set hour value

29 void Time::setHour(int h)

30 {

31 hour = (h >= 0 && h < 24) ? h : 0; // validate hour

32 } // end function setHour

33

34 // set minute value

35 void Time::setMinute(int m)

36 {

37 minute = (m >= 0 && m < 60) ? m : 0; // validate minute

38 } // end function setMinute

39

40 // set second value

41 void Time::setSecond(int s)

42 {

43 second = (s >= 0 && s < 60) ? s : 0; // validate second

44 } // end function setSecond

45

46 // return hour value

47 int Time::getHour() const // get functions should be const

48 {

49 return hour;

50 } // end function getHour

const keyword in function definition, as

well as in function prototype

const Example

Systems Programming Deeper into C++ Classes 9

51

52 // return minute value

53 int Time::getMinute() const

54 {

55 return minute;

56 } // end function getMinute

57

58 // return second value

59 int Time::getSecond() const

60 {

61 return second;

62 } // end function getSecond

63

64 // print Time in universal-time format (HH:MM:SS)

65 void Time::printUniversal() const

66 {

67 cout << setfill('0') << setw(2) << hour << ":"

68 << setw(2) << minute << ":" << setw(2) << second;

69 } // end function printUniversal

70

71 // print Time in standard-time format (HH:MM:SS AM or PM)

72 void Time::printStandard() // note lack of const declaration

73 {

74 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

75 << ":" << setfill('0') << setw(2) << minute

76 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");

77 } // end function printStandard

const Example

Systems Programming Deeper into C++ Classes 10

 1 // Fig. 21.3: fig21_03.cpp

 2 // Attempting to access a const object with non-const member functions.

 3 #include "Time.h" // include Time class definition

 4

 5 int main()

 6 {

 7 Time wakeUp(6, 45, 0); // non-constant object

 8 const Time noon(12, 0, 0); // constant object

 9

10 // OBJECT MEMBER FUNCTION

11 wakeUp.setHour(18); // non-const non-const

12

13 noon.setHour(12); // const non-const

14

15 wakeUp.getHour(); // non-const const

16

17 noon.getMinute(); // const const

18 noon.printUniversal(); // const const

19

20 noon.printStandard(); // const non-const

21 return 0;

22 } // end main

Cannot invoke non-const member

functions on a const object

const Example

Systems Programming Deeper into C++ Classes 11

Borland C++ command-line compiler error messages:

Warning W8037 fig21_03.cpp 13: Non-const function Time::setHour(int)

 called for const object in function main()

Warning W8037 fig21_03.cpp 20: Non-const function Time::printStandard()
 called for const object in function main()

Microsoft Visual C++.NET compiler error messages:

C:\examples\ch21\Fig21_01_03\fig21_03.cpp(13) : error C2662:
 'Time::setHour' : cannot convert 'this' pointer from 'const Time' to
 'Time &'

 Conversion loses qualifiers

C:\examples\ch21\Fig21_01_03\fig21_03.cpp(20) : error C2662:
 'Time::printStandard' : cannot convert 'this' pointer from 'const Time' to
 'Time &'

 Conversion loses qualifiers

GNU C++ compiler error messages:

Fig21_03.cpp:13: error: passing `const Time' as `this' argument of
 `void Time::setHour(int)' discards qualifiers

Fig21_03.cpp:20: error: passing `const Time' as `this' argument of

 `void Time::printStandard()' discards qualifiers

const Example

Systems Programming Deeper into C++ Classes 12

 Required for initializing:

– const data members

– data members that are references.

 Can be used for any data member.

 Member initializer list

– Appears between a constructor’s parameter list and the
left brace that begins the constructor’s body.

– Separated from the parameter list with a colon (:).

– Each member initializer consists of the data member
name followed by parentheses containing the member’s
initial value.

– Multiple member initializers are separated by commas.

– Executes before the body of the constructor executes.

Member Initializer

Systems Programming Deeper into C++ Classes 13

 1 // Fig. 21.4: Increment.h

 2 // Definition of class Increment.

 3 #ifndef INCREMENT_H

 4 #define INCREMENT_H

 5

 6 class Increment

 7 {

 8 public:

 9 Increment(int c = 0, int i = 1); // default constructor

10

11 // function addIncrement definition

12 void addIncrement()

13 {

14 count += increment;

15 } // end function addIncrement

16

17 void print() const; // prints count and increment

18 private:

19 int count;

20 const int increment; // const data member

21 }; // end class Increment

22

23 #endif

const data member that must be

initialized using a member initializer

Member Initializer

Systems Programming Deeper into C++ Classes 14

 1 // Fig. 21.5: Increment.cpp

 2 // Member-function definitions for class Increment demonstrate using a

 3 // member initializer to initialize a constant of a built-in data type.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "Increment.h" // include definition of class Increment

 9

10 // constructor

11 Increment::Increment(int c, int i)

12 : count(c), // initializer for non-const member

13 increment(i) // required initializer for const member

14 {

15 // empty body

16 } // end constructor Increment

17

18 // print count and increment values

19 void Increment::print() const

20 {

21 cout << "count = " << count << ", increment = " << increment << endl;

22 } // end function print

Colon (:) marks the start of a member initializer list

Member initializer for non-const member count

Required member initializer for const member increment

Member Initializer

Systems Programming Deeper into C++ Classes 15

print being const member function not required, but safer

 1 // Fig. 21.6: fig21_06.cpp

 2 // Program to test class Increment.

 3 #include <iostream>

 4 using std::cout;

 5

 6 #include "Increment.h" // include definition of class Increment

 7

 8 int main()

 9 {

10 Increment value(10, 5);

11

12 cout << "Before incrementing: ";

13 value.print();

14

15 for (int j = 1; j <= 3; j++)

16 {

17 value.addIncrement();

18 cout << "After increment " << j << ": ";

19 value.print();

20 } // end for

21

22 return 0;

23 } // end main

Before incrementing: count = 10, increment = 5

After increment 1: count = 15, increment = 5
After increment 2: count = 20, increment = 5
After increment 3: count = 25, increment = 5

Member Initializer

Systems Programming Deeper into C++ Classes 16

Software Engineering Observation 18.3

 A const object cannot be modified by
assignment, so it must be initialized.
When a data member of a class is
declared const, a member initializer
must be used to provide the
constructor with the initial value of
the data member for an object of
the class. The same is true for
references.

Systems Programming Deeper into C++ Classes 17

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Common Programming Error 18.5

 Not providing a member initializer
for a const data member is a
compilation error.

Systems Programming Deeper into C++ Classes 18

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Error-Prevention Tip 18.1

Systems Programming Deeper into C++ Classes 19

Copyright © Pearson, Inc. 2013. All Rights Reserved.

18.3 Composition:
Objects as Members of Classes

 Composition
– Sometimes referred to as a has-a
relationship.

– A class can have objects of other classes
as members.

– Example
• AlarmClock object with a Time object as a
member.

Systems Programming Deeper into C++ Classes 20

Composition: Objects as Members of Classes

 Initializing member objects

– Member initializers pass arguments from the object’s
constructor to member-object constructors.

Member objects are constructed in the order in which
they are declared in the class definition.

• Not in the order that they are listed in the
constructor’s member initializer list.

• Before the enclosing class object (host object) is
constructed.

– If a member initializer is not provided

• The member object’s default constructor will be called
implicitly.

Systems Programming Deeper into C++ Classes 21

Software Engineering Observation 18.4

A common form of software
reusability is composition, in
which a class has objects of
other classes as members.

Systems Programming Deeper into C++ Classes 22

Copyright © Pearson, Inc. 2013. All Rights Reserved.

18.8 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 23

First example of static data member in C++

18.9 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 24

18.9 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 25

18.9 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 26

Standard C trick

18.10 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 27

18.10 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 28

Parameters to be passed via member

initializers to the constructor for class Date

const objects of class Date as members

utilizes a default copy constructor

18. 11 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 29

Member initializers that pass arguments to

Date’s implicit default copy constructor

18.11 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 30

18.3 Composition:
Objects as Members of Classes (cont.)

31 Systems Programming Deeper into C++ Classes

 As you study class Date (Fig. 18.8), notice that
the class does not provide a constructor that
receives a parameter of type Date.

 Why can the Employee constructor’s member
initializer list initialize the birthDate and hireDate
objects by passing Date object’s to their Date
constructors?

 The compiler provides each class with a default
copy constructor that copies each data member of
the constructor’s argument object into the
corresponding member of the object being
initialized.

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Passing objects to a

host object constructor

18.12 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 32

18.12 Composition Example

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Systems Programming Deeper into C++ Classes 33

Common Programming Error 18.6

 A compilation error occurs if a
member object is not initialized with
a member initializer and the member
object’s class does not provide a
default constructor (i.e., the member
object’s class defines one or more
constructors, but none is a default
constructor).

Systems Programming Deeper into C++ Classes 34

Copyright © Pearson, Inc. 2013. All Rights Reserved.

18.3 Composition:
Objects as Members of Classes (cont.)

35 Systems Programming Deeper into C++ Classes

 If a member object is not initialized
through a member initializer, the member
object’s default constructor will be called
implicitly.

 Values, if any, established by the default
constructor can be overridden by set
functions.

 However, for complex initialization, this
approach may require significant additional
work and time.

 Copyright © Pearson, Inc. 2013. All Rights Reserved.

18.4 friend Functions and friend Classes

 friend function of a class
– Defined outside that class’s scope.

– Not a member function of that class.

– has the right to access the non-public and
public members of that class.

– Standalone functions, entire classes or member
functions of other classes may be declared to
be friends of a class.

– Using friend can enhance performance.

– Often appropriate when a member function
cannot be used for certain operations.

Systems Programming Deeper into C++ Classes 36

Copyright © Pearson, Inc. 2013. All Rights Reserved.

 To declare a function as a friend of a class:

– Provide the function prototype in the
class definition preceded by keyword
friend.

 To declare a class as a friend of another
class:

– Place a declaration of the form

 friend class ClassTwo;
in the definition of class ClassOne

 All member functions of class ClassTwo are
friends of class ClassOne.

friend Functions and friend Classes

Systems Programming Deeper into C++ Classes 37

 Friendship is granted, not taken.

– For class B to be a friend of class A, class A
must explicitly declare that class B is its friend.

 Friendship relation is neither symmetric nor
transitive

– If class A is a friend of class B, and class B is
a friend of class C, you cannot infer that class
B is a friend of class A, that class C is a friend
of class B, or that class A is a friend of class
C.

friend Functions and friend Classes

Systems Programming Deeper into C++ Classes 38

 It is possible to specify overloaded functions as
friends of a class.

– Each overloaded function intended to be a
friend must be explicitly declared as a friend

 of the class.

friend Functions and friend Classes

Systems Programming Deeper into C++ Classes 39

 1 // Fig. 21.15: fig21_15.cpp

 2 // Friends can access private members of a class.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 // Count class definition

 8 class Count

 9 {

10 friend void setX(Count &, int); // friend declaration

11 public:

12 // constructor

13 Count()

14 : x(0) // initialize x to 0

15 {

16 // empty body

17 } // end constructor Count

18

19 // output x

20 void print() const

21 {

22 cout << x << endl;

23 } // end function print

24 private:

25 int x; // data member

26 }; // end class Count

friend function declaration (can

appear anywhere in the class)

Fig 18.13 friend Function Example

Systems Programming Deeper into C++ Classes 40

27

28 // function setX can modify private data of Count

29 // because setX is declared as a friend of Count (line 10)

30 void setX(Count &c, int val)

31 {

32 c.x = val; // allowed because setX is a friend of Count

33 } // end function setX

34

35 int main()

36 {

37 Count counter; // create Count object

38

39 cout << "counter.x after instantiation: ";

40 counter.print();

41

42 setX(counter, 8); // set x using a friend function

43 cout << "counter.x after call to setX friend function: ";

44 counter.print();

45 return 0;

46 } // end main

counter.x after instantiation: 0

counter.x after call to setX friend function: 8

friend function can modify Count’s private data

Calling a friend function; note that we

pass the Count object to the function

Systems Programming Deeper into C++ Classes 41

Fig 18.13 friend Function Example

 1 // Fig. 10.16: fig10_16.cpp

 2 // Non-friend/non-member functions cannot access private data of a class.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 // Count class definition (note that there is no friendship declaration)

 8 class Count

 9 {

10 public:

11 // constructor

12 Count()

13 : x(0) // initialize x to 0

14 {

15 // empty body

16 } // end constructor Count

17

18 // output x

19 void print() const

20 {

21 cout << x << endl;

22 } // end function print

23 private:

24 int x; // data member

25 }; // end class Count

non-friend Function Example

Systems Programming Deeper into C++ Classes 42

26

27 // function cannotSetX tries to modify private data of Count,

28 // but cannot because the function is not a friend of Count

29 void cannotSetX(Count &c, int val)

30 {

31 c.x = val; // ERROR: cannot access private member in Count

32 } // end function cannotSetX

33

34 int main()

35 {

36 Count counter; // create Count object

37

38 cannotSetX(counter, 3); // cannotSetX is not a friend

39 return 0;

40 } // end main

Non-friend function cannot access

the class’s private data

non-friend Function Example

Systems Programming Deeper into C++ Classes 43

Borland C++ command-line compiler error message:

Error E2247 Fig21_16/fig21_16.cpp 31: 'Count::x' is not accessible in
 function cannotSetX(Count &,int)

Microsoft Visual C++.NET compiler error messages:

C:\examples\ch21\Fig21_16\fig21_16.cpp(31) : error C2248: 'Count::x'
 : cannot access private member declared in class 'Count'

 C:\examples\ch21\Fig21_16\fig21_16.cpp(24) : see declaration
 of 'Count::x'

 C:\examples\ch21\Fig21_16\fig21_16.cpp(9) : see declaration
 of 'Count'

GNU C++ compiler error messages:

Fig21_16.cpp:24: error: 'int Count::x' is private

Fig21_16.cpp:31: error: within this context

non-friend Function Example

Systems Programming Deeper into C++ Classes 44

18.5 Using the this Pointer

 Member functions know which object’s data
members to manipulate.
– Every object has access to its own address

through a pointer called this (a C++
keyword).

– An object’s this pointer is not part of the
object itself.

– The this pointer is passed (by the compiler)
as an implicit argument to each of the
object’s non-static member functions.

Systems Programming Deeper into C++ Classes 45

Copyright © Pearson, Inc. 2013. All Rights Reserved.

 Objects use the this pointer implicitly or
explicitly.

– this is used implicitly when accessing
members directly.

– It is used explicitly when using keyword
this.

– The type of the this pointer depends on
the type of the object and whether the
executing member function is declared
const.

18.5 Using the this Pointer

Systems Programming Deeper into C++ Classes 46

Copyright © Pearson, Inc. 2013. All Rights Reserved.

 1 // Fig. 21.17: fig21_17.cpp

 2 // Using the this pointer to refer to object members.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 class Test

 8 {

 9 public:

10 Test(int = 0); // default constructor

11 void print() const;

12 private:

13 int x;

14 }; // end class Test

15

16 // constructor

17 Test::Test(int value)

18 : x(value) // initialize x to value

19 {

20 // empty body

21 } // end constructor Test

Fig 18.14 this Example

Systems Programming Deeper into C++ Classes 47

22

23 // print x using implicit and explicit this pointers;

24 // the parentheses around *this are required

25 void Test::print() const

26 {

27 // implicitly use the this pointer to access the member x

28 cout << " x = " << x;

29

30 // explicitly use the this pointer and the arrow operator

31 // to access the member x

32 cout << "\n this->x = " << this->x;

33

34 // explicitly use the dereferenced this pointer and

35 // the dot operator to access the member x

36 cout << "\n(*this).x = " << (*this).x << endl;

37 } // end function print

38

39 int main()

40 {

41 Test testObject(12); // instantiate and initialize testObject

42

43 testObject.print();

44 return 0;

45 } // end main

 x = 12
 this->x = 12
(*this).x = 12

Implicitly using the this pointer to access member x

Explicitly using the this pointer to access member x

Using the dereferenced this pointer and the dot operator

Systems Programming Deeper into C++ Classes 48

Fig 18.14 this Example

Common Programming Error 18.7

 Attempting to use the member
selection operator (.) with a pointer
to an object is a compilation error—
the dot member selection operator
may be used only with an lvalue such
as an object’s name, a reference to
an object or a dereferenced pointer
to an object.

Systems Programming Deeper into C++ Classes 49

Copyright © Pearson, Inc. 2013. All Rights Reserved.

 Using the this Pointer

 Cascaded member-function calls
– Multiple functions are invoked in the
same statement.

Enabled by member functions returning a
reference to an object via the this
pointer.

– Example
• t.setMinute(30).setSecond(22);

– Calls t.setMinute(30);

– Then calls t.setSecond(22);

Systems Programming Deeper into C++ Classes 50

 1 // Fig. 21.18: Time.h

 2 // Cascading member function calls.

 3

 4 // Time class definition.

 5 // Member functions defined in Time.cpp.

 6 #ifndef TIME_H

 7 #define TIME_H

 8

 9 class Time

10 {

11 public:

12 Time(int = 0, int = 0, int = 0); // default constructor

13

14 // set functions (the Time & return types enable cascading)

15 Time &setTime(int, int, int); // set hour, minute, second

16 Time &setHour(int); // set hour

17 Time &setMinute(int); // set minute

18 Time &setSecond(int); // set second

 set functions return Time & (a reference) to

enable cascading

Cascading Function Calls
using the this Pointer

Systems Programming Deeper into C++ Classes 51

19

20 // get functions (normally declared const)

21 int getHour() const; // return hour

22 int getMinute() const; // return minute

23 int getSecond() const; // return second

24

25 // print functions (normally declared const)

26 void printUniversal() const; // print universal time

27 void printStandard() const; // print standard time

28 private:

29 int hour; // 0 - 23 (24-hour clock format)

30 int minute; // 0 - 59

31 int second; // 0 - 59

32 }; // end class Time

33

34 #endif

Cascading Function Calls
using the this Pointer

Systems Programming Deeper into C++ Classes 52

 1 // Fig. 21.19: Time.cpp

 2 // Member-function definitions for Time class.

 3 #include <iostream>

 4 using std::cout;

 5

 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9

10 #include "Time.h" // Time class definition

11

12 // constructor function to initialize private data;

13 // calls member function setTime to set variables;

14 // default values are 0 (see class definition)

15 Time::Time(int hr, int min, int sec)

16 {

17 setTime(hr, min, sec);

18 } // end Time constructor

19

20 // set values of hour, minute, and second

21 Time &Time::setTime(int h, int m, int s) // note Time & return

22 {

23 setHour(h);

24 setMinute(m);

25 setSecond(s);

26 return *this; // enables cascading

27 } // end function setTime

Returning *this pointer enables cascading

Cascading Function Calls
using the this Pointer

Systems Programming Deeper into C++ Classes 53

28

29 // set hour value

30 Time &Time::setHour(int h) // note Time & return

31 {

32 hour = (h >= 0 && h < 24) ? h : 0; // validate hour

33 return *this; // enables cascading

34 } // end function setHour

35

36 // set minute value

37 Time &Time::setMinute(int m) // note Time & return

38 {

39 minute = (m >= 0 && m < 60) ? m : 0; // validate minute

40 return *this; // enables cascading

41 } // end function setMinute

42

43 // set second value

44 Time &Time::setSecond(int s) // note Time & return

45 {

46 second = (s >= 0 && s < 60) ? s : 0; // validate second

47 return *this; // enables cascading

48 } // end function setSecond

49

50 // get hour value

51 int Time::getHour() const

52 {

53 return hour;

54 } // end function getHour

Cascading Function Calls
using the this Pointer

Systems Programming Deeper into C++ Classes 54

55

56 // get minute value

57 int Time::getMinute() const

58 {

59 return minute;

60 } // end function getMinute

61

62 // get second value

63 int Time::getSecond() const

64 {

65 return second;

66 } // end function getSecond

67

68 // print Time in universal-time format (HH:MM:SS)

69 void Time::printUniversal() const

70 {

71 cout << setfill('0') << setw(2) << hour << ":"

72 << setw(2) << minute << ":" << setw(2) << second;

73 } // end function printUniversal

74

75 // print Time in standard-time format (HH:MM:SS AM or PM)

76 void Time::printStandard() const

77 {

78 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

79 << ":" << setfill('0') << setw(2) << minute

80 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");

81 } // end function printStandard

Cascading Function Calls
using the this Pointer

Systems Programming Deeper into C++ Classes 55

 1 // Fig. 21.20: fig21_20.cpp

 2 // Cascading member function calls with the this pointer.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 #include "Time.h" // Time class definition

 8

 9 int main()

10 {

11 Time t; // create Time object

12

13 // cascaded function calls

14 t.setHour(18).setMinute(30).setSecond(22);

15

16 // output time in universal and standard formats

17 cout << "Universal time: ";

18 t.printUniversal();

19

20 cout << "\nStandard time: ";

21 t.printStandard();

22

23 cout << "\n\nNew standard time: ";

24

25 // cascaded function calls

26 t.setTime(20, 20, 20).printStandard();

27 cout << endl;

28 return 0;

29 } // end main

Cascaded function calls using the reference

returned by one function call to invoke the next

Note that these calls must appear in the

order shown, because printStandard

does not return a reference to t

Cascading Function Calls
using the this Pointer

Systems Programming Deeper into C++ Classes 56

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

Cascading Function Calls
using the this Pointer

Systems Programming Deeper into C++ Classes 57

19.9 Dynamic Memory Management:
Operators new and delete

 Dynamic memory management in C++
– Enables programmers to allocate and
deallocate memory for objects, arrays or
any built-in or user-defined type.

– Performed by operators new and delete.

– For example, dynamically allocating
memory for an array instead of using a
fixed-size array.

Systems Programming Deeper into C++ Classes 58

Copyright © Pearson, Inc. 2013. All Rights Reserved.

 Operator new
– Allocates (i.e., reserves) storage of the exact for an

object from the free store at execution time.
– Calls a default constructor to initialize the object.
– Returns a pointer of the type specified to the right of

new (e.g., Time * below).
– Can be used to dynamically allocate any fundamental type

(such as int or double) or any class type.
 The free store (referred to as the heap)

– Is a region of memory assigned to each program for
storing objects created at execution time.

Example:
 Time *timePtr
 timePtr = new Time;

19.9 Operators new and delete

Systems Programming Deeper into C++ Classes 59

Copyright © Pearson, Inc. 2013. All Rights Reserved.

 Operator delete
– Destroys a dynamically allocated object.

– Calls the destructor for the object (e.g.
to which timePtr points below).

– Deallocates (i.e., releases) memory from
the free store.

– The memory can then be reused by the
system to allocate other objects.

Example:

 delete timePtr;
Systems Programming Deeper into C++ Classes 60

19.9 Operators new and delete

 Initializing an object allocated by new
– Initializer for a newly created fundamental-
type variable.

Example
double *ptr = new double(3.14159);

– Specify a comma-separated list of arguments
to the constructor of an object.

Example
Time *timePtr = new Time(12, 45, 0);

Systems Programming Deeper into C++ Classes 61

19.9 Operators new and delete

 new operator can be used to allocate
arrays dynamically.
– Dynamically allocate a 10-element
integer array:

 int *gradesArray = new int[10];

– Size of a dynamically allocated array
• Specified using any integral expression that
can be evaluated at execution time.

Queue * queuePtr = new Queue[mules];

Systems Programming Deeper into C++ Classes 62

19.9 Operators new and delete

 Delete a dynamically allocated array:

delete [] gradesArray;

– This deallocates the array to which gradesArray
points.

– If the pointer points to an array of objects,

• It first calls the destructor for every object in
the array.

• Then it deallocates the memory.

– If the statement did not include the square
brackets ([]) and gradesArray pointed to an array
of objects : result is undefined!!

• Some compilers would call destructor for only
the first object in the array.

Systems Programming Deeper into C++ Classes 63

19.9 Operators new and delete

18.6 static Class Members

 static data member
– When only one copy of a variable is
shared by all objects of a class.
• The member is “class-wide” information.

• A property of the class shared by all
instances, not a property of a specific object
of the class.

– Static data members can save storage.

– Declaration begins with keyword static.

Systems Programming Deeper into C++ Classes 64

Copyright © Pearson, Inc. 2013. All Rights Reserved.

 IMGD Example
– Video game with Martians and other
space creatures

– Each Martian needs to know the martianCount.

– martianCount should be static class-wide data.

– Every Martian can access martianCount as if it
were a data member of that Martian

– Only one copy of martianCount exists.

– May seem like global variables but static
data members have class scope.

– Can be declared public, private or
protected.

Systems Programming Deeper into C++ Classes 65

18.6 static Class Members

 Fundamental-type static data members
– Initialized by default to 0.
– If you want a different initial value, a static data

member can be initialized once (and only once).
 Static const data member of int or enum type

– Can be initialized in its declaration in the class
definition.

 All other static data members
– Must be defined at file scope (i.e., outside the body of

the class definition).
– Can be initialized only in those definitions.

 static data members of class types (i.e., static member
objects) that have default constructors

– Need not be initialized because their default
constructors will be called.

Systems Programming Deeper into C++ Classes 66

Copyright © Pearson, Inc. 2013. All Rights Reserved.

18.6 static Class Members

 Exists even when no objects of the class exist.

– To access a public static class member when no objects
of the class exist.

• Prefix the class name and the binary scope resolution
operator (::) to the name of the data member.

– Example

Martian::martianCount

– Also accessible through any object of that class

• Use the object’s name, the dot operator and the
name of the member.

– Example

myMartian.martianCount

Systems Programming Deeper into C++ Classes 67

18.6 static Class Members

 static member function

– Is a service of the class, not of a specific
object of the class.

 static is applied to an item at file scope.

– That item becomes known only in that file.

– The static members of the class need to be
available from any client code that accesses the
file.

• So we cannot declare them static in the .cpp
file—we declare them static only in the .h
file.

Systems Programming Deeper into C++ Classes 68

18.6 static Class Members

Presentation Note

 The following example is older and from
the 5th Edition of the Deitel textbook.

 This example is more complicated (but
useful) because it provides an example of
pointers to member functions and explicit
new and delete memory allocation and
deallocation calls .

 For an easier example of static data and
member functions, see Figures 18.18 to
18.20 in the 7th Edition of Deitel & Deitel.

69 Systems Programming Deeper into C++ Classes

 1 // Fig. 21.21: Employee.h

 2 // Employee class definition.

 3 #ifndef EMPLOYEE_H

 4 #define EMPLOYEE_H

 5

 6 class Employee

 7 {

 8 public:

 9 Employee(const char * const, const char * const); // constructor

10 ~Employee(); // destructor

11 const char *getFirstName() const; // return first name

12 const char *getLastName() const; // return last name

13

14 // static member function

15 static int getCount(); // return number of objects instantiated

16 private:

17 char *firstName;

18 char *lastName;

19

20 // static data

21 static int count; // number of objects instantiated

22 }; // end class Employee

23

24 #endif

Function prototype for static member function

static data member keeps track of number

of Employee objects that currently exist

static class member Example

Systems Programming Deeper into C++ Classes 70

 1 // Fig. 21.22: Employee.cpp

 2 // Member-function definitions for class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 #include <cstring> // strlen and strcpy prototypes

 8 using std::strlen;

 9 using std::strcpy;

10

11 #include "Employee.h" // Employee class definition

12

13 // define and initialize static data member at file scope

14 int Employee::count = 0;

15

16 // define static member function that returns number of

17 // Employee objects instantiated (declared static in Employee.h)

18 int Employee::getCount()

19 {

20 return count;

21 } // end static function getCount

static data member is defined and

initialized at global scope in the .cpp

file. (NO static keyword here!)

static member function can access only

static data, because the function might

be called when no objects exist.

 static class member Example

Systems Programming Deeper into C++ Classes 71

22

23 // constructor dynamically allocates space for first and last name and

24 // uses strcpy to copy first and last names into the object

25 Employee::Employee(const char * const first, const char * const last)

26 {

27 firstName = new char[strlen(first) + 1];

28 strcpy(firstName, first);

29

30 lastName = new char[strlen(last) + 1];

31 strcpy(lastName, last);

32

33 count++; // increment static count of employees

34

35 cout << "Employee constructor for " << firstName

36 << ' ' << lastName << " called." << endl;

37 } // end Employee constructor

38

39 // destructor deallocates dynamically allocated memory

40 Employee::~Employee()

41 {

42 cout << "~Employee() called for " << firstName

43 << ' ' << lastName << endl;

44

45 delete [] firstName; // release memory

46 delete [] lastName; // release memory

47

48 count--; // decrement static count of employees

49 } // end ~Employee destructor

Dynamically allocating char arrays

Non-static member function (i.e., constructor)

can modify the class’s static data members

Deallocating memory reserved for arrays

static class member Example

Systems Programming Deeper into C++ Classes 72

50

51 // return first name of employee

52 const char *Employee::getFirstName() const

53 {

54 // const before return type prevents client from modifying

55 // private data; client should copy returned string before

56 // destructor deletes storage to prevent undefined pointer

57 return firstName;

58 } // end function getFirstName

59

60 // return last name of employee

61 const char *Employee::getLastName() const

62 {

63 // const before return type prevents client from modifying

64 // private data; client should copy returned string before

65 // destructor deletes storage to prevent undefined pointer

66 return lastName;

67 } // end function getLastName

 static class member Example

Systems Programming Deeper into C++ Classes 73

 1 // Fig. 21.23: fig21_23.cpp

 2 // Driver to test class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 #include "Employee.h" // Employee class definition

 8

 9 int main()

10 {

11 // use class name and binary scope resolution operator to

12 // access sta
tic number function getCount

13 cout << "Number of employees before instantiation of any objects is "

14 << Employee::getCount() << endl; // use class name

15

16 // use new to dynamically create two new Employees

17 // operator new also calls the object's constructor

18 Employee *e1Ptr = new Employee("Susan", "Baker");

19 Employee *e2Ptr = new Employee("Robert", "Jones");

20

21 // call getCount on first Employee object

22 cout << "Number of employees after objects are instantiated is "

23 << e1Ptr->getCount();

24

25 cout << "\n\nEmployee 1: "

26 << e1Ptr->getFirstName() << " " << e1Ptr->getLastName()

27 << "\nEmployee 2: "

28 << e2Ptr->getFirstName() << " " << e2Ptr->getLastName() << "\n\n";

Calling static member function using class name

and binary scope resolution operator

Dynamically creating Employees with new

Calling a static member function through

a pointer to an object of the class

static class member Example

Systems Programming Deeper into C++ Classes 74

29

30 delete e1Ptr; // deallocate memory

31 e1Ptr = 0; // disconnect pointer from free-store space

32 delete e2Ptr; // deallocate memory

33 e2Ptr = 0; // disconnect pointer from free-store space

34

35 // no objects exist, so call static member function getCount again

36 // using the class name and the binary scope resolution operator

37 cout << "Number of employees after objects are deleted is "

38 << Employee::getCount() << endl;

39 return 0;

40 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after objects are instantiated is 2

Employee 1: Susan Baker

Employee 2: Robert Jones

~Employee() called for Susan Baker
~Employee() called for Robert Jones
Number of employees after objects are deleted is 0

Releasing memory to which a pointer points

Disconnecting a pointer from any space in memory

static class member Example

Systems Programming Deeper into C++ Classes 75

 static Class Members
 Declare a member function static

– If it does not access non-static data members or
non-static member functions of the class.

 A static member function does not have a this
pointer.

 static data members and static member
functions exist independently of any objects of
a class.

 When a static member function is called, there
might not be any objects of its class in
memory!!

Systems Programming Deeper into C++ Classes 76

 const objects and const member
functions

 Member Composition Example
 friend function Example
 this pointer Example
 Dynamic memory management

– new and delete operators
 static class members

Review of Deeper into C++ Classes

Systems Programming Deeper into C++ Classes 77

