

Classes
and

Objects

Systems Programming

Classes and Objects

 Class Definitions and Objects
 Member Functions
 Data Members

– Get and Set functions
– Constructors

 Placing Classes in Separate Files
 Separating Interface from Implementation
 Data Validation

– Ensures that data in an object is in a particular
format or range.

Systems Programming Classes and Objects 2

C++ Program Structure

 Typically C++ Programs will consist of:
– A function main

– One or more classes
• Each containing data members and member
functions.

Systems Programming Classes and Objects 3

16.2 Defining a Class
With a Member Function

 Class definition
– Tells the compiler what member functions
and data members belong to the class.

– Keyword class followed by the class’s
name.

– Class body is enclosed in braces ({})
• Specifies data members and member functions

• Access-specifier public:
– Indicates that a member function or data member is

accessible to other functions and member functions
of other classes.

Systems Programming Classes and Objects 4

C++ Gradebook Example
 1 // Fig. 19.1: fig19_01.cpp

 2 // Define class GradeBook with a member function displayMessage;

 3 // Create a GradeBook object and call its displayMessage function.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 // GradeBook class definition

 9 class GradeBook

10 {

11 public:

12 // function that displays a welcome message to the GradeBook user

13 void displayMessage()

14 {

15 cout << "Welcome to the Grade Book!" << endl;

16 } // end function displayMessage

17 }; // end class GradeBook

18

19 // function main begins program execution

20 int main()

21 {

22 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

23 myGradeBook.displayMessage(); // call object's displayMessage function

24 return 0; // indicate successful termination

25 } // end main

Welcome to the Grade Book!

Beginning of class definition

for class GradeBook

Beginning of class body

End of class body

Access specifier public; makes

members available to the public

Member function displayMessage

returns nothing.

Use dot operator to call

GradeBook’s member function

Systems Programming Classes and Objects 5

Member Function Takes a Parameter

 1 // Fig. 19.3: fig19_03.cpp

 2 // Define class GradeBook with a member function that takes a parameter;

 3 // Create a GradeBook object and call its displayMessage function.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8

 9 #include <string> // program uses C++ standard string class

10 using std::string;

11 using std::getline;

12

13 // GradeBook class definition

14 class GradeBook

15 {

16 public:

17 // function that displays a welcome message to the GradeBook user

18 void displayMessage(string courseName)

19 {

20 cout << "Welcome to the grade book for\n" << courseName << "!"

21 << endl;

22 } // end function displayMessage

23 }; // end class GradeBook

24

25 // function main begins program execution

26 int main()

27 {

28 string nameOfCourse; // string of characters to store the course name

29 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

30

Include string class

definition

Member function

parameter

Use the function

parameter as a

variable

Systems Programming Classes and Objects 6

31 // prompt for and input course name

32 cout << "Please enter the course name:" << endl;

33 getline(cin, nameOfCourse); // read a course name with blanks

34 cout << endl; // output a blank line

35

36 // call myGradeBook's displayMessage function

37 // and pass nameOfCourse as an argument

38 myGradeBook.displayMessage(nameOfCourse);

39 return 0; // indicate successful termination

40 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Passing an argument to the

member function

Member function takes a parameter

Systems Programming Classes and Objects 7

 getline is a library fcn

 A string
– Represents a string of characters.
– An object of C++ Standard Library class

std::string
• Defined in header file <string>.

 Library function getline
– Used to retrieve input until a newline is

encountered.
– Example

• getline(cin, nameOfCourse);
– Inputs a line from standard input into string object

nameOfCourse.

Member Function Takes a Parameter

Systems Programming Classes and Objects 8

 Local variables

– Variables declared in a function definition’s body cannot
be used outside of that function body.

– When a function terminates the values of its local
variables are lost.

 Attributes

– Exist throughout the life of the object.

– Are represented as data members.

• Namely, associated with variables in a class
definition.

• Are declared inside a class definition but outside the
bodies of the class’s member-function definitions.

– Each object of a class maintains its own copy of its
attributes in memory.

16.4 Data Members, set Functions and
get Functions

Systems Programming Classes and Objects 9

16.4 Data Members, set Functions and
get Functions

 Access-specifier private

– Makes a data member or member function
accessible only to member functions of the
class.

– private is the default access for class
members.

– “information hiding” is an object-oriented
tenet.

 Returning a value from a function

– A function that specifies a return type other
than void

• Returns a value to its calling function.

Systems Programming Classes and Objects 10

 1 // Fig. 19.5: fig19_05.cpp

 2 // Define class GradeBook that contains a courseName data member

 3 // and member functions to set and get its value;

 4 // Create and manipulate a GradeBook object with these functions.

 5 #include <iostream>

 6 using std::cout;

 7 using std::cin;

 8 using std::endl;

 9

10 #include <string> // program uses C++ standard string class

11 using std::string;

12 using std::getline;

13

14 // GradeBook class definition

15 class GradeBook

16 {

17 public:

18 // function that sets the course name

19 void setCourseName(string name)

20 {

21 courseName = name; // store the course name in the object

22 } // end function setCourseName

23

24 // function that gets the course name

25 string getCourseName()

26 {

27 return courseName; // return the object's courseName

28 } // end function getCourseName

29

set function modifies private

data

get function accesses private

data

16.4 Data Members, set Functions and
get Functions

Systems Programming Classes and Objects 11

30 // function that displays a welcome message

31 void displayMessage()

32 {

33 // this statement calls getCourseName to get the

34 // name of the course this GradeBook represents

35 cout << "Welcome to the grade book for\n" << getCourseName() << "!"

36 << endl;

37 } // end function displayMessage

38 private:

39 string courseName; // course name for this GradeBook

40 }; // end class GradeBook

41

42 // function main begins program execution

43 int main()

44 {

45 string nameOfCourse; // string of characters to store the course name

46 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

47

48 // display initial value of courseName

49 cout << "Initial course name is: " << myGradeBook.getCourseName()

50 << endl;

51

Use set and get functions,

even within the class

Accessing private data

outside class definition

private members accessible

only to member functions of the

class

16.4 Data Members, set Functions and
get Functions

default constructor

Systems Programming Classes and Objects 12

52 // prompt for, input and set course name

53 cout << "\nPlease enter the course name:" << endl;

54 getline(cin, nameOfCourse); // read a course name with blanks

55 myGradeBook.setCourseName(nameOfCourse); // set the course name

56

57 cout << endl; // outputs a blank line

58 myGradeBook.displayMessage(); // display message with new course name

59 return 0; // indicate successful termination

60 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Modifying private data outside class

definition

16.4 Data Members, set Functions and
get Functions

default setting from constructor
is an empty string!!

Systems Programming Classes and Objects 13

Software Engineering Observation 16.1

 As a rule of thumb, data members
should be declared private and
member functions should be
declared public. (We will see that it
is appropriate to declare certain
member functions private, if they
are to be accessed only by other
member functions of the class.)

Systems Programming Classes and Objects 14

Data Members, set Functions and
 get Functions

 Software engineering with set and get functions:

– public member functions that allow clients of a
class to set or get the values of private data
members.

– set functions are sometimes called mutators and
get functions are sometimes called accessors.

– Allows the creator of the class to control how
clients access private data.

– Should also be used by other member functions
of the same class.

Systems Programming Classes and Objects 15

Initializing Objects with Constructors

 Constructors

– Functions used to initialize an object’s data when it is
created.

• The call is made implicitly by the compiler when the
object is created.

• Must be defined with the same name as the class.

• Cannot return values.

– Not even void !!

– A default constructor has no parameters.

• The compiler will provide one when a class does not
explicitly include a constructor.

• A compiler’s default constructor only calls
constructors of data members that are objects of
classes.

Systems Programming Classes and Objects 16

16.5 Initializing Objects with Constructors

 Any constructor that takes no arguments is called a
default constructor.

 A class gets a default constructor in one of two ways:
– The compiler implicitly creates a default constructor in a class

that does not define a constructor. Such a constructor does not
initialize the class’s data members, but does call the default
constructor for each data member that is an object of another
class. An uninitialized variable typically contains a “garbage”
value.

– You explicitly define a constructor that takes no arguments.
Such a default constructor will call the default constructor for
each data member that is an object of another class and will
perform additional initialization specified by you.

 If you define a constructor with arguments, C++ will not
implicitly create a default constructor for that class.

Systems Programming Classes and Objects 17

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Constructor Example

Systems Programming Classes and Objects 18

Constructor has same name

as class and no return type

Initialize data member

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Constructor Example

Systems Programming Classes and Objects 19

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Constructor Example

Systems Programming Classes and Objects 20

Creating objects implicitly calls the

constructor

Copyright © Pearson, Inc. 2013. All Rights Reserved.

Placing a Class in a Separate File
for Reusability

 .cpp file is known as a source-code file.

 Header files

– Separate files in which class definitions are
placed.

– Allows compiler to recognize the classes when
used elsewhere.

– Generally have .h filename extensions

 Driver files

– A program used to test software (such as
classes).

– Contains a main function so it can be executed.

Systems Programming Classes and Objects 21

16.7 Separating Interface from
Implementation

 Interface

– Describes what services a class’s clients can use and
how to request those services.

• without revealing how the class carries out the
services.

• a class definition that lists only member function
names, return types and parameter types.

– e.g., function prototypes

– A class’s interface consists of the class’s public member
functions (services).

 Separating interface from implementation:

– Client code should not break if implementation changes,
as long as the interface stays the same.

Systems Programming Classes and Objects 22

Separating Interface from Implementation

 Define the member functions outside the class
definition, in a separate source-code file.

– In a source-code file for a class

• Use binary scope resolution operator (::) to
tie each member function to the class
definition.

– Implementation details are hidden.

• Client code does not need to know the
implementation.

 In a header file for a class

– The function prototypes describe the class’s
public interface.

Systems Programming Classes and Objects 23

 1 // Fig. 19.11: GradeBook.h

 2 // GradeBook class definition. This file presents GradeBook's public

 3 // interface without revealing the implementations of GradeBook's member

 4 // functions, which are defined in GradeBook.cpp.

 5 #include <string> // class GradeBook uses C++ standard string class

 6 using std::string;

 7

 8 // GradeBook class definition

 9 class GradeBook

10 {

11 public:

12 GradeBook(string); // constructor that initializes courseName

13 void setCourseName(string); // function that sets the course name

14 string getCourseName(); // function that gets the course name

15 void displayMessage(); // function that displays a welcome message

16 private:

17 string courseName; // course name for this GradeBook

18 }; // end class GradeBook

Interface contains data members and

member function prototypes

Separating Interface from Implementation

Systems Programming Classes and Objects 24

 1 // Fig. 19.12: GradeBook.cpp

 2 // GradeBook member-function definitions. This file contains

 3 // implementations of the member functions prototyped in GradeBook.h.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "GradeBook.h" // include definition of class GradeBook

 9

10 // constructor initializes courseName with string supplied as argument

11 GradeBook::GradeBook(string name)

12 {

13 setCourseName(name); // call set function to initialize courseName

14 } // end GradeBook constructor

15

16 // function to set the course name

17 void GradeBook::setCourseName(string name)

18 {

19 courseName = name; // store the course name in the object

20 } // end function setCourseName

21

Binary scope resolution operator

ties a function to its class

GradeBook implementation is placed

in a separate source-code file

Include the header file to access

the class name GradeBook

Separating Interface from Implementation

Systems Programming Classes and Objects 25

22 // function to get the course name

23 string GradeBook::getCourseName()

24 {

25 return courseName; // return object's courseName

26 } // end function getCourseName

27

28 // display a welcome message to the GradeBook user

29 void GradeBook::displayMessage()

30 {

31 // call getCourseName to get the courseName

32 cout << "Welcome to the grade book for\n" << getCourseName()

33 << "!" << endl;

34 } // end function displayMessage

Separating Interface from Implementation

Systems Programming Classes and Objects 26

 1 // Fig. 19.13: fig19_13.cpp

 2 // GradeBook class demonstration after separating

 3 // its interface from its implementation.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "GradeBook.h" // include definition of class GradeBook

 9

10 // function main begins program execution

11 int main()

12 {

13 // create two GradeBook objects

14 GradeBook gradeBook1("CS101 Introduction to C++ Programming");

15 GradeBook gradeBook2("CS102 Data Structures in C++");

16

17 // display initial value of courseName for each GradeBook

18 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()

19 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()

20 << endl;

21 return 0; // indicate successful termination

22 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Separating Interface from Implementation

Systems Programming Classes and Objects 27

Note - This is a separate .cpp

file that holds only main.

19.10 Validating Data with set
Functions

 set functions can validate data.

– Known as validity checking.

– Keeps object in a consistent state.

• The data member contains a valid value.

– Can return values indicating that attempts were
made to assign invalid data.

 string member functions

– length returns the number of characters in the
string.

– substr returns specified substring within the
string.

Systems Programming Classes and Objects 28

Validating Data with set Functions

 1 // Fig. 19.16: GradeBook.cpp

 2 // Implementations of the GradeBook member-function definitions.

 3 // The setCourseName function performs validation.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "GradeBook.h" // include definition of class GradeBook

 9

10 // constructor initializes courseName with string supplied as argument

11 GradeBook::GradeBook(string name)

12 {

13 setCourseName(name); // validate and store courseName

14 } // end GradeBook constructor

15

16 // function that sets the course name;

17 // ensures that the course name has at most 25 characters

18 void GradeBook::setCourseName(string name)

19 {

20 if (name.length() <= 25) // if name has 25 or fewer characters

21 courseName = name; // store the course name in the object

22

set functions perform validity checking to

keep courseName in a consistent state

Constructor calls set function to

perform validity checking

Systems Programming Classes and Objects 29

Validating Data with set Functions

23 if (name.length() > 25) // if name has more than 25 characters

24 {

25 // set courseName to first 25 characters of parameter name

26 courseName = name.substr(0, 25); // start at 0, length of 25

27

28 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"

29 << "Limiting courseName to first 25 characters.\n" << endl;

30 } // end if

31 } // end function setCourseName

32

33 // function to get the course name

34 string GradeBook::getCourseName()

35 {

36 return courseName; // return object's courseName

37 } // end function getCourseName

38

39 // display a welcome message to the GradeBook user

40 void GradeBook::displayMessage()

41 {

42 // call getCourseName to get the courseName

43 cout << "Welcome to the grade book for\n" << getCourseName()

44 << "!" << endl;

45 } // end function displayMessage

Systems Programming Classes and Objects 30

Review of Classes and Objects

 Introduced class definitions and objects
– Public versus private access into class.

 Syntax for member functions

 Syntax data members
– Get and Set functions

– Constructors

 Placing classes in separate files

 Separating interface from implementation

 Data validation in set functions.

Systems Programming Classes and Objects 31

