
CS2303 Systems Programming Concepts A14

 1

Program 3 {September 22, 2014} 42 Points

Event-Driven Simulation of a Simple Computer System Model

Due: Tuesday, September 23, 2014 at 11:59 p.m.

This assignment focuses on the use of data structures built in C with structures. One specific goal

of this assignment is to give the students practice with C pointers.

Additionally, completing this assignment requires understanding the basics of event-driven

simulation which is used prominently in the performance analysis of computer systems and

computer networks. The primary objective of this assignment is to use event-driven simulation

together with a FCFS (First Come First Served) scheduler and a RR (Round Robin)

scheduler. The simulation diagram for a Simple Computing Model of a computer below consists

of n processes arriving at the CPU scheduler for service. The CPU server uses a RR scheduler.

Once a job completes its total time required at the CPU, it goes to the FCFS I/O server.

In RR scheduling, arriving customers are enqueued at the back of the scheduler queue. The

process at the front of the queueing system gets up to one time slice of CPU service. If the process

does not finish within its time slice, as indicated in the figure, the time slice expires and the

process returns to the back of the scheduler queue to await its turn for another time slice.

1

2

3

n

expired time slice

SI

XXX

G

D

Round Robin QueueRound Robin Queue

CPU Arrivals

Simple Computing Model

Departs I/O

CS2303 Systems Programming Concepts A14

 2

Assignment Inputs

Your program begins by reading in two command line arguments source and time-slice to

indicate respectively, the number of source processes to simulate and the time slice to be used in

the RR scheduler. For this simulator all time will be represented in 100 milliseconds units.

Thus, a command line time-slice of 2 indicates a 200 millisecond time slice. Moreover, 100

milliseconds is the smallest granularity of time within the simulator.

The simulator program reads source lines of input from an ASCII script file where each line of

input contains:

process-id arrival_time cpu_time io_time

where arrival_time, cpu_time and io_time are in simulation units (i.e. 100 millisecond units)

For example, the input line:

 2166 30 24 65

indicates that process 2166 arrives at the scheduler at simulated time 3 seconds needing 2.4

seconds of CPU service and 6.5 seconds of I/O time (Note – I have converted milliseconds to

seconds here!).

Main Assignment

In this assignment, you are REQUIRED is to use an event list mechanism to simulate the

performance of the simple computing model. (Note – for Program 5 you will need an

implementation of both RR and FCFS, but you can drop the event list mechanism in Program 5, if

your team prefers an alternate simulator design.) Your final output consists of two log files that

annotate the simulation of the computer system and track customers. You need to run your

simulator twice (once for each of two different RR time slices). Each output file logs for each

process simulated: its arrival time to the simulation, its arrival time at the CPU scheduler, its

arrival time at the I/O device and its completion time. The log files output events in chronological

order.

The Event List

Event-driven simulation is controlled by a linked list known as the event list. Future events are

simulated by inserting them into the event list in chronological order with the next event in

simulated time at the front of the list. In this assignment, the event list will hold three event types:

process arrivals, completion time of the process currently running on the CPU and the completion

time of the process currently running on the I/O device. The simulation runs in a continuous loop

processing the next event at the front of the event list until the event list becomes empty.

CS2303 Systems Programming Concepts A14

 3

Processing an arrival event involves taking the entry off the event list and sending the process to

the CPU scheduler queue. Processing a CPU completion event involves first determining whether

the process still requires more CPU time. If the process has completed, process statistics are

calculated and recorded before the process moves to the I/O scheduler queue. If the process still

needs more CPU time, the process is enqueued at the back of the CPU queue. In either case, taking

the completion event off the event list triggers a call to the processor scheduler. If there is a

process at the front of the scheduler, it is taken off the front of the scheduler queue and a new event

with the appropriate completion time is inserted into the event list. If the CPU queue is empty

when the current time slice completes, this process can get another time slice immediately and a

new completion event is placed on the event list. Similarly for a process currently receiving I/O

service, when the completion event for I/O comes off the event list, this triggers a call to the I/O

scheduler.

With a discrete event driven simulator, it is common to have two or events placed on the event list

with the EXACT same event time. To keep all student output consistent and facilitate grading,

you MUST use process id as the ‘tie breaker’ for insertion in the event list such that in the case of

identical event times, the process with the LOWER process ID number gets inserted BEFORE the

process with the higher process ID number in the event list.

The FCFS and the RR Scheduler

The FCFS scheduler is implemented as a queue data structure with arriving processes enqueued at

the back of the I/O queue and the next process to receive I/O service taken off the front of the

FCFS queue and added to the event list.

The RR scheduler is also implemented as a queue with arriving processes enqueued at the back of

the queue and the next process to receive service taken off the front of the RR queue and inserted

in the event list. The difference for the RR scheduler is a process only receives a maximum of one

time slice of service each time it receives CPU service. If after a time slice, the process still needs

more service the processor sends this process to the back of the queue.

For both the FCFS and the RR scheduler, when a process arrives at a specific device (CPU or

I/O), the device scheduler needs to check if another process is currently running. If the device is

idle, the arriving process is sent to the event list with the appropriate completion time. If the

device is currently busy, the process gets enqueued at the back of the scheduler queue.

Performance Metrics

For each process in the simulation, you need to compute the total time spent waiting (in the queue)

at both devices and the overall time spent by the process to traverse the system. You need to

compute the average process time enqueued at each device and the overall average time spent by

processes in the system.

CS2303 Systems Programming Concepts A14

 4

What to turn in for Program 3 (prog3)

An official test file will be made available a few days before the due date. Assume the simulation

will simulate a maximum of 20 processes going through the simple compute system. Your

assignments involves running the same test data using two distinct time slices (200 milliseconds

and 500 milliseconds) and using the simulator to analyze which time slice works better for the test

data. Turn in your assignment using the turnin program on the CCC machines. You should turn in

a tarred file that includes your source code, your two output log files (one for each time slice

run), a make file and a README file. The README file should provide any information to help

the TA or SA test your program for grading purposes and provide a clear statement about the parts

of the simulator that were not yet working when the tar file was submitted to turnin.

