
CS2303 Systems Programming Concepts A08

Program 3 40 Points
Due: September 25, 2008 at 11:59 p.m.
Event-Driven Simulation of a Processor Scheduling Queue in C

This assignment focuses on the use of data structures built in C with structures. One specific goal of this
assignment is to give the students practice with C pointers.

Additionally, completing this assignment will require understanding the basics of event-driven simulation
which is used prominently in performance analysis of computer systems and computer networks. The primary
objective of this assignment is to use an event-list in an event-driven simulation to compare the performance
of a FCFS (First Come First Served) scheduler against a RR (Round Robin) scheduler. The
simulation topology consists of n processes arriving at the CPU scheduler for service (e.g. see the RR
scheduler figure below). Assume queue sizes are unbounded in this program.

 An FCFS scheduler serves customers in the order of their arrival to the scheduler queue. Each process runs
on the CPU within interruption until completion.

Developed for multiprogrammed, time-sharing operating systems, a RR scheduler allocates up to a time
slice (e.g., 100 milliseconds) of CPU service to the process at the front of the scheduler queue. In simple RR,
arriving customers are enqueued at the back of the scheduler queue. If the process does not finish within a
time slice, as indicated in the figure, the process returns to the back of the scheduler queue to await its turn for
another time slice.

1

2

3

n

expired time slice

SI
XXX

G

D

Round Robin QueueRound Robin Queue

 1

CS2303 Systems Programming Concepts A08

Assignment Inputs

Your program begins by reading in two command line arguments source and time-slice to indicate
respectively, the number of source processes to simulate and the time slice to be used in the RR simulation.
For this simulator all time will be represented in 100 milliseconds units. Thus, a command line time-slice
of 2 indicates a 200 millisecond time slice. Moreover, 100 milliseconds is the smallest time granularity of the
simulator.

The program reads source lines of input from a script file (in ASCII) where each line of input contains:

process-id arrival_time cpu_time

where arrival_time and cpu_time are in simulation units (i.e. 100 milliseconds).

For example, the input line:

 2166 30 205
indicates that process 2166 arrives at the scheduler at simulated time 3 seconds needing 20.5 seconds of
CPU service.

Since the input script will drive both the simulation of FCFS and RR, your program should first store all the
input script into memory.

Main Assignment

The assignment requires the use of an event list to simulate the performance of the CPU running processes
for both FCFS and RR processor scheduling. In this simulation, to clearly understand the role of the event
list, one needs an abstraction where the processor queue is separated from the current process being served.

The FCFS Scheduler

The FCFS scheduler is implemented as a queue data structure with arriving processes enqueued at the back
of the queue. When the FCFS scheduler serves a process, the process node is taken from the front of the FCFS
queue and its completion event is simulated by placing the process node in the event list.

The RR Scheduler

The RR scheduler is also implemented as a queue. When a new process is sent to the RR queue, it is
enqueued at the back of the queue. When the RR scheduler serves a process, it executes the process for one
time slice or for the remaining process execution if it is smaller than a time slice. To simulate time slice
execution, the process node is updated and taken from the front of the RR queue and the completion event

 2

CS2303 Systems Programming Concepts A08

associated with the time slice is added to the event list. The process node needs to be updated to reflect the
remaining processing time needed by the process after the time slice has expired.

In the case of multiple processes being placed in the scheduler queue at identical simulated times, use
process-id as the time-breaker. For example, given process 3 and then process 6 scheduled arrive at the
CPU scheduler at the simulated time 12, the process 6 node should be placed behind the process 3 node in the
scheduler queue. This rule applies to both the FCFS and the RR scheduler.

The Event List

Pure event-driven simulation is controlled by a linked list known as the event list. While there are other
ways to drive a simulation which can be used in Program 5, for this assignment you must use an event list.
Future events are inserted into the event list in chronological order with the next event in simulated time at the
front of the list. In the case of multiple events on the event list with identical event times, use the process-id
as the time-breaker. For example, given two events, one for process 3 and one for process 6 that are both
scheduled to occur at the simulated time 12, the process 3 node should be taken off the event list before the
process 6 node.

In this assignment, the event list will hold two event types, process arrivals and the completion time of the
process currently running on the CPU. Initially, the event list is populated with nodes indicating the arrival
time of each process. The simulation runs in a continuous loop processing the next event at the front of the
event list until the event list is empty. Processing an arrival event involves taking the entry off the event list
and sending the process node to the CPU scheduler. Processing a CPU completion event involves first
determining whether the process still requires more CPU time at the end of the time slice (for the RR
scheduler). If the process has completed, process statistics are calculated and recorded before the process is
terminated. If the process still needs more CPU time (for the RR scheduler), the process is enqueued at the
back of the scheduler queue. In either case, taking the completion event off the event list triggers a call to the
processor scheduler. If there is a process at the front of the scheduler queue, it is taken off the front of the
scheduler queue and a new event with the appropriate completion time is inserted into the event list.

Assignment Output

Your final output consists of a single file annotating the simulation of the first FCFS and RR queuing
mechanisms. Namely, the output logs the simulated arrival time and completion time of each process in
simulated chronological order. Once the simulation ends, output the mean and variance of process response
time for both queuing mechanisms. Note – no C file I/O is required for this assignment. The output file is
redirected from standard output by Unix on the command line.

What to turn in for Program 3

An official test file will be made available a few days before the due date. Turn in your assignment using
the turnin program on the CCC machines. You should turn in a tarred file that includes your source code,
a make file and a README file. The README file should provide any information to help the TA or SA
test your program for grading purpose.

 3

