
FunctionsFunctionsFunctions

Systems ProgrammingSystems Programming

FunctionsFunctions

Simple Function Example
Function Prototype and Declaration
Math Library Functions
Function Definition
Header Files
Random Number Generator
Call by Value and Call by Reference
Scope (global and local)
Call by Value Example
Static Variables

Systems Programming: FunctionsSystems Programming: Functions 22

Simple Function ExampleSimple Function Example
char isalive (int i)
{
if (i > 0)
return 'A';

else
return 'D';

}
int main ()
{
int Peter, Paul, Mary, Tom;

Peter = -2; Paul = 0; Mary = 1; Tom = 2;

printf("Peter is %c Paul is %c\nMary is %c Tom is %c\n",
isalive (Peter), isalive (Paul),
isalive (Mary), isalive (Tom));

return 0;
}

%./dora
Peter is D Paul is D
Mary is A Tom is A

mainmain
C programs start C programs start
execution at main.execution at main.
is simply another is simply another
function.function.

All functions have a All functions have a
return value.return value.

Systems Programming: FunctionsSystems Programming: Functions 33Systems Programming: FunctionsSystems Programming: Functions 33

Function DeclarationsFunction Declarations
char isalive (int i);

int main ()
{
int Peter, Paul, Mary, Tom;

Peter = -2; Paul = 0; Mary = 1; Tom = 2;

printf("Peter is %c Paul is %c\nMary is %c Tom is %c\n",
isalive (Peter), isalive (Paul),
isalive (Mary), isalive (Tom));

return 0;
}
char isalive (int i)
{
if (i > 0)
return 'A';

else
return 'D';

}

function prototype

function placed after reference

Systems Programming: FunctionsSystems Programming: Functions 44Systems Programming: FunctionsSystems Programming: Functions 44

5.2 Program Modules in C5.2 Program Modules in C
Functions { also referred to as routines or

subroutines}
– Modules in C
– Programs combine user-defined functions

with library functions.
• C standard library has a wide variety of functions.

Function calls
– Invoking functions

• Provide function name and arguments (data).
• Function performs operations or
manipulations.

• Function returns results.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 55Systems Programming: FunctionsSystems Programming: Functions 55

5.3 Math Library Functions5.3 Math Library Functions
Math library functions

– perform common mathematical calculations.
– #include <math.h>

Format for calling functions
– FunctionName (argument);

• If multiple arguments, use comma-separated list.
– printf("%.2f", sqrt(900.0));

• Calls function sqrt, which returns the square root of
its argument.

• All math functions return data type double.
– Arguments may be constants, variables, or expressions.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 66Systems Programming: FunctionsSystems Programming: Functions 66

Fig. 5.2 Commonly used math
library functions. (Part 1)

Fig. 5.2 Commonly used math
library functions. (Part 1)

 Function Description Example

 sqrt(x) square root of x sqrt(900.0) is 30.0

sqrt(9.0) is 3.0

 exp(x) exponential function ex exp(1.0) is 2.718282

exp(2.0) is 7.389056

 log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

 log10(x) logarithm of x (base 10) log10(1.0) is 0.0
log10(10.0) is 1.0
log10(100.0) is 2.0

 fabs(x) absolute value of x fabs(5.0) is 5.0
fabs(0.0) is 0.0
fabs(-5.0) is 5.0

 ceil(x) rounds x to the smallest integer
not less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

 © 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 77Systems Programming: FunctionsSystems Programming: Functions 77

Fig. 5.2 Commonly used math
library functions. (Part 2)

Fig. 5.2 Commonly used math
library functions. (Part 2)

 Function Description Example

 floor(x) rounds x to the largest integer
not greater than x

floor(9.2) is 9.0

floor(-9.8) is -10.0

 pow(x, y) x raised to power y (xy) pow(2, 7) is 128.0
pow(9, .5) is 3.0

 fmod(x, y) remainder of x/y as a floating-
point number

fmod(13.657, 2.333) is 1.992

 sin(x) trigonometric sine of x
(x in radians)

sin(0.0) is 0.0

 cos(x) trigonometric cosine of x
(x in radians)

cos(0.0) is 1.0

 tan(x) trigonometric tangent of x
(x in radians)

tan(0.0) is 0.0

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 88Systems Programming: FunctionsSystems Programming: Functions 88

5.4 Functions5.4 Functions
Functions

– Modularize a program.
– All variables defined inside functions are local

variables.
• Known only in function defined.

– Parameters
• Communicate information between functions.
• Local variables

Benefits of functions
– Software reusability

• Use existing functions as building blocks for new
programs.

• Abstraction - hide internal details (library functions).
– Avoid code repetition

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 99Systems Programming: FunctionsSystems Programming: Functions 99

5.5 Function Definitions5.5 Function Definitions
Function definition format

return-value-type function-name(parameter-list)
{

declarations and statements
}

Function-name: any valid identifier
Return-value-type: data type of the result (default int)

– void – indicates that the function returns nothing.
Parameter-list: comma separated list, declares parameters

– A type must be listed explicitly for each parameter
unless, the parameter is of type int.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 1010Systems Programming: FunctionsSystems Programming: Functions 1010

5.5 Function Definitions5.5 Function Definitions
Function definition format (continued)

return-value-type function-name(parameter-list)
{

declarations and statements
}

Definitions and statements: function body (block)
– Variables can be defined inside blocks (can be nested).
– Functions can not be defined inside other functions!

Returning control
– If nothing returned

• return;

• or, until reaches right brace
– If something returned

• return expression;
© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 1111Systems Programming: FunctionsSystems Programming: Functions 1111

5.6 Function Prototypes5.6 Function Prototypes
Function prototype

– Function name
– Parameters – what the function takes in.
– Return type – data type function returns.

(default int)
– Used to validate functions.
– Prototype only needed if function definition

comes after use in program.
Promotion rules and conversions

– Converting to lower types can lead to errors.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 1212Systems Programming: FunctionsSystems Programming: Functions 1212

Fig. 5.5 Promotion hierarchyFig. 5.5 Promotion hierarchy

 Data type printf conversion
specification

scanf conversion
specification

 Long double %Lf %Lf

 double %f %lf

 float %f %f

 Unsigned long int %lu %lu

 long int %ld %ld

 unsigned int %u %u

 int %d %d

 unsigned short %hu %hu

 short %hd %hd

 char %c %c

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 1313Systems Programming: FunctionsSystems Programming: Functions 1313

5.7 Function Call Stack
and Activation Records
5.7 Function Call Stack
and Activation Records

Program execution stack
A stack is a last-in, first-out (LIFO) data structure.

– Anything put into the stack is placed “on top”.
– The only data that can be taken out is the data on top.

C uses a program execution stack to keep track of which
functions have been called.

– When a function is called, it is placed on top of the
stack.

– When a function ends, it is taken off the stack and
control returns to the function immediately below it.

Calling more functions than C can handle at once is known as a
“stack overflow error”.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 1414Systems Programming: FunctionsSystems Programming: Functions 1414

5.8 Headers5.8 Headers
Header files

– Contain function prototypes for library functions.
– e.g., <stdlib.h> , <math.h>
– Load with #include <filename>

#include <math.h>
Custom header files

– Create file with functions.
– Save as filename.h
– Load in other files with #include "filename.h"
– This facilitates functions reuse.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 1515Systems Programming: FunctionsSystems Programming: Functions 1515

Fig. 5.6 Standard library headers
(Part 3)

Fig. 5.6 Standard library headers
(Part 3)

 Standard library header Explanation

 <stdio.h> Contains function prototypes for the standard input/output library
functions, and information used by them.

 <stdlib.h> Contains function prototypes for conversions of numbers to text
and text to numbers, memory allocation, random numbers, and
other utility functions.

 <string.h> Contains function prototypes for string-processing functions.
 <time.h> Contains function prototypes and types for manipulating the time

and date.

Systems Programming: FunctionsSystems Programming: Functions 1616Systems Programming: FunctionsSystems Programming: Functions 1616

5.10 Random Number Generation5.10 Random Number Generation
rand function

– Load <stdlib.h>
– Returns "random" number between 0 and RAND_MAX (at

least 32767).
i = rand();

– Pseudorandom
• Preset sequence of "random" numbers
• Same sequence for every function call

Scaling
– To get a random number between 1 and n.

i = 1 + (rand() % n)
• rand() % n returns a number between 0 and n – 1.

• Add 1 to make random number between 1 and n.
i = 1 + (rand() % 6)
– number between 1 and 6

© 2007 Pearson Ed -All rights reserved.

Systems Programming: FunctionsSystems Programming: Functions 1717Systems Programming: FunctionsSystems Programming: Functions 1717

Random Number ExampleRandom Number Example

Systems Programming: FunctionsSystems Programming: Functions 1818Systems Programming: FunctionsSystems Programming: Functions 1818

 1 /* Fig. 5.7: fig05_07.c

 2 Shifted, scaled integers produced by 1 + rand() % 6 */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5
 6 /* function main begins program execution */

 7 int main(void)

 8 {

 9 int i; /* counter */

10
11 /* loop 20 times */
12 for (i = 1; i <= 20; i++) {
13
14 /* pick random number from 1 to 6 and output it */
15 printf("%10d", 1 + (rand() % 6));
16
17 /* if counter is divisible by 5, begin new line of output */
18 if (i % 5 == 0) {
19 printf("\n");
20 } /* end if */
21
22 } /* end for */
23
24 return 0; /* indicates successful termination */
25
26 } /* end main */

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

Generates a random number between 1 and 6

© 2007 Pearson Ed -All rights reserved.

Call by ValueCall by Value

When arguments are passed by the
calling routine to the called routine by
value,

– A copy of the argument is passed to the
called routing.

– Hence, any changes made to the passed
argument by the called routine DO NOT
change the original argument in the
calling routine.

– This avoids accidental changes known as
sideside--effecting.effecting.

Systems Programming: FunctionsSystems Programming: Functions 1919Systems Programming: FunctionsSystems Programming: Functions 1919

Call by ReferenceCall by Reference

When arguments are passed by the
calling routine to the called routine by
reference,

– The original argument is passed to the
called routing.

– Hence, any changes made to the passed
argument means that this changes remain
in effect when control is returned to the
calling routine.

Systems Programming: FunctionsSystems Programming: Functions 2020

Scope (simple)Scope (simple)

In C, the scope of a declared variable or
type is defined within the range of the
block of code in which the declaration is
made.
Two simple examples:

1. declarations outside all functions are
called globals. They can be referenced
and modified by ANY function.
{Note – this violates good programming
practice rules}.

Systems Programming: FunctionsSystems Programming: Functions 2121

Scope (simple)Scope (simple)

2. Local variables – declarations made inside
a function mean that variable name is
defined only within the scope of that
function.
Variables with the same name outside the
function are different.
Every time the function is invoked the
value of local variables need to re-
initialized upon entry to the function.
Local variables have the automatic storage
duration by default (implicit).

auto double x, y /* explicit */

Systems Programming: FunctionsSystems Programming: Functions 2222

Call by Value ExampleCall by Value Example
/* Example shows call-by-value and the scope of a global variable 'out' */

int out = 100; /* out is global variable */

/* byval modifies local, global and variables passed by value. */

int byval (int i, int j)
{

int tmp;
tmp = 51;
i = tmp - 10*i - j;
out = 2*out + i + j;
j++;
tmp++;
printf("In byval: i = %2d, j = %2d, tmp = %2d, out = %3d\n",

i, j, tmp, out);
return i;

}

global is changed

Systems Programming: FunctionsSystems Programming: Functions 2323

Call by Value Example (cont)Call by Value Example (cont)
int main ()
{

int i, j, tmp, s;

tmp = 77;
j = 1;

for (i = 0; i < 2; i++)
{

s = byval(i,j);
out = out + s - j;
printf("In main : i = %2d, j = %2d, tmp = %2d, out = %3d, s = %d\n",

i, j, tmp, out, s);
}

return 0;
}

global is changed

Systems Programming: FunctionsSystems Programming: Functions 2424

Call by Value ExampleCall by Value Example
int main ()
{

int i, j, tmp, s;

tmp = 77;
j = 1;

for (i = 0; i < 2; i++)
{

s = byval(i,j);
out = out + s - j;
printf("In main : i = %2d, j = %2d, tmp = %2d, out = %3d, s = %d\n",

i, j, tmp, out, s);
}

return 0;
}

$./byval
In byval: i = 50, j = 2, tmp = 52, out = 251
In main : i = 0, j = 1, tmp = 77, out = 300, s = 50
In byval: i = 40, j = 2, tmp = 52, out = 641
In main : i = 1, j = 1, tmp = 77, out = 680, s = 40

Systems Programming: FunctionsSystems Programming: Functions 2525

Static VariablesStatic Variables

Local variables declared with the keyword
static are still only known in the function in
which they are defined.
However, unlike automatic variables, static
local variables retain their value when the
function is exited.

e.g.,
static int count = 2;

All numeric static variables are initialized to
zero if not explicitly initialized.

Systems Programming: FunctionsSystems Programming: Functions 2626

Static VariablesStatic Variables
/* An Example of a Static Variable */

float nonstat (float x)
{
int i = 1;
i = 10*i;
x = i - 5.0*x;
return x;

}
float stat (float y)
{
static int i = 1;
i = 10*i;
y = i - 5.0*y;
return y;

}

Systems Programming: FunctionsSystems Programming: Functions 2727

Static VariablesStatic Variables
int main()
{
int i;
float var1, var2;
var2 = var1 = 2.0;
printf(" var1 = %9.2f, var2 = %9.2f\n", var1, var2);

for (i = 1; i <= 3; i++)
{

var1 = nonstat(var1);
var2 = stat(var2);
printf(" var1 = %9.2f, var2 = %9.2f\n", var1, var2);

}
return 0;

}

$./static
var1 = 2.00, var2 = 2.00
var1 = 0.00, var2 = 0.00
var1 = 10.00, var2 = 100.00
var1 = -40.00, var2 = 500.00

Systems Programming: FunctionsSystems Programming: Functions 2828

SummarySummary

The important concepts introduced in
this Powerpoint session are:

– Functions
– Libraries
– Header Files
– Call by Value
– Call by Reference
– Scope (global and local)
– Static Variables

Systems Programming: FunctionsSystems Programming: Functions 2929

	Functions
	Functions
	Simple Function Example
	Function Declarations
	5.2 Program Modules in C
	5.3 Math Library Functions
	Fig. 5.2 Commonly used math library functions. (Part 1)
	Fig. 5.2 Commonly used math library functions. (Part 2)
	5.4 Functions
	5.5 Function Definitions
	5.5 Function Definitions
	5.6 Function Prototypes
	Fig. 5.5 Promotion hierarchy
	5.7 Function Call Stack and Activation Records
	5.8 Headers
	Fig. 5.6 Standard library headers (Part 3)
	5.10 Random Number Generation
	Random Number Example
	Call by Value
	Call by Reference
	Scope (simple)
	Scope (simple)
	Call by Value Example
	Call by Value Example (cont)
	Call by Value Example
	Static Variables
	Static Variables
	Static Variables
	Summary

