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Abstract—As broadband connection capacities increase, resi-
dential network users can experience performance degradation
when multiple applications run concurrently over bottlenecked
wireless access points (APs). This paper presents Classification
and Treatment iN an AP (CATNAP), a plug-and-play solution
for an AP that automatically classifies and treats flows pass-
ing through without any user intervention. CATNAP classi-
fies application flows across three dimensions based on their
response to flow traffic, bitrate greediness and interactivity.
Then, based on the classification, CATNAP treats flows by rate
limiting/preserving, adjusting packet time in queue or dropping
packets. CATNAP is implemented in NS-2 and evaluated against
DropTail and Strict Priority Queuing under various network
and traffic conditions. Analysis of the results show CATNAP
provides better QoS support for VoIP, games and streaming video
applications.

Index Terms—Wireless Network, IEEE 802.11, QoS

I. INTRODUCTION

The wireless access point (AP) (see Figure 1) connects

residential computers and entertainment devices inside the

home to the Internet. While IEEE 802.11 (a/b/g/n) wireless

protocols have improved their nominal link rates (e.g., up to

260 Mbps for 11n), they rarely reach these top speeds [16].

In uncontrolled environments, real attainable AP throughputs

are hampered by the shared medium, hidden terminals, low-

end 11b and 11g devices, devices on overlapping frequencies

(e.g., microwave ovens and Bluetooth devices), walls and

other obstacles. Conversely, residential broadband connection

capacities have grown – Akamai Technologies reports that

the top four countries have more than 50 Mbps peak con-

nections to the home and three U.S. states (Massachusetts,

New Jersey and Maryland) provide 50 Mbps peak residential

connections [17]. This often leaves the wireless AP link as the

network bottleneck.

Wireless APs typically do not differentiate traffic. By treat-

ing concurrent applications with dramatically different quality

of service (QoS) requirements equally, APs cause degraded

QoS experiences for applications such as network games, real-

time videos, or Voice over IP (VoIP) when another application

simultaneously downloads a file through the same AP [7], [14].

Having studied various QoS mechanisms including IEEE

802.11e, Integrated Services (IntServ), and Differentiated Ser-

vices (DiffServ), researchers have yet to deploy QoS function-

ality for residential use due to the lack of suitable mappings

of application flows into specific QoS classes. Recent stud-

Fig. 1. Typical Residential Wireless Network

ies demonstrate that port-based traffic identification is error-

prone [13], [15] since applications often intentionally avoid

using well-known or consistent ports. Packet payloads can

be inspected to achieve higher accuracy [13], but the high

computational complexity and ineffectiveness for encrypted

packet payloads make this approach impractical for real-time

classification. While statistics-based classification methods use

machine learning techniques and assume applications transfer

data in repeatable, identifiable patterns [6], [12], [19], they

are unusable for new, unclassified applications and ineffective

in wireless environments. Since APs have limited ability to

detect the application types running over their networks, they

cannot easily shape traffic to provide better QoS. Currently,

most residential wireless APs provide no QoS support (e.g.,

the 5th generation Apple Airport Extreme IEEE 802.11n

wireless router [10]) or only support QoS with complicated

manual configuration (e.g., the Cisco Wireless LAN controller

5500 series, which needs 14 steps to add per-user capacity

limitations).

This paper presents a traffic classification technique that

identifies applications based on their wireless network traf-

fic characteristics while providing the AP with new traffic

treatments to shape the traffic by mitigating the effects of

wireless media [4]. Classification And Treatment iN an Access

Point (CATNAP) automatically differentiates flow traffic into

eight categories and treats traffic to improve QoS over residen-

tial wireless links. Implementation in NS-2 and comparison
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against DropTail and Strict Priority Queuing under various

network and traffic conditions shows CATNAP provides better

QoS support for multimedia applications.

The paper is organized as follows: Section II describes the

CATNAP treatment-based classification approach; Section III

discusses simulations experiments used to evaluate CATNAP;

Section IV analyzes the results of the simulation experiments;

and Section V summarizes our conclusions.

II. TREATMENT-BASED CLASSIFICATION

CATNAP consists of two major components: the classifier

and the treater. The classifier places the flows into different

categories in real-time based on the nature of their traffic,

without prior training and without relying upon ports or pay-

loads. As wireless APs have limited processors and memory,

the CATNAP treater uses four non-CPU-intensive operations:

push, delay, drop and limit to help flows meet their QoS

requirements.

Fig. 2. QoS Dimensions for Most Home Applications

Figure 2 describes the QoS requirements of most home

applications in a three dimensional space. The first dimension

divides applications into response-based and non-response-

based. Response-based flows directly or indirectly cause traffic

in the reserve direction.

CATNAP further separates applications into interactive and

non-interactive flows based on their delay tolerance. Since

interactive applications such as VoIP or network games are

sensitive to network delay, CATNAP pushes interactive ap-

plications to the front of the AP queue while non-interactive

applications (e.g., P2P file sharing) can tolerate being delayed

without significant degradation to QoS.

The final dimension in Figure 2 distinguishes greedy ap-

plications (e.g., FTP) that grab as much network capacity

as possible from non-greedy applications (e.g., rate-limited

streaming video) that do not consume additional capacity,

even when it is available. CATNAP “tames” greedy TCP

applications by reducing the advertised window in TCP ACK

packets to limit transmission rates while reserving dropping

as a treatment only for non-response-based, greedy UDP

applications.

A. Identifying response-based/non-response-based flows

CATNAP classifies TCP flows as response-based and most

UDP flows as non-response-based. DNS UDP flows running

on port 53 are also classified as response-based. Classification

is done by inspecting the packet header for protocol type TCP

and port number for port 53. As dropping a packet triggers a

TCP retransmission, CATNAP only uses the drop operation on

non-response-based applications that generally tolerate some

packet loss without significant quality degradation (e.g., video

over UDP).

B. Identifying interactive/non-interactive flows

The CATNAP interactive/non-interactive classifier uses

packet length to infer flow type. Interactive applications tend

to transmit data in smaller packets relative to typical network

MTUs. Non-interactive applications such as FTP usually send

large packets near the network MTU. Some applications like

the SSH session across a campus network shown in Figure 3

change their nature from interactive to non-interactive flows

and back during their life cycle. In the figure, the x-axis

is time and the y-axis is packet length in bytes. Each ‘+’

depicts packet length for one packet. For this application,

this SSH user executed around two dozen Linux directory

commands before opening (via cat) a 30 MB file at the

40th second. The file is then displayed onscreen for about

17 seconds. After the 60th second, the user resumed the di-

rectory operations. This single SSH flow was interactive when

browsing the directory and non-interactive when displaying the

file. An interactive/non-interactive classifier must detect state

changes quickly while ignoring packet length outliers (e.g.,

the occasional large packets between time 0 and 40 seconds

that do not indicate a change in state).
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Fig. 3. Packet Length versus Time for SSH Flow

CATNAP uses as an exponential weighted moving average

(EWMA) packet length to classify interactive/non-interactive

flows. When packet p of flow i arrives, CATNAP updates for

L flow i:

L← L× (1− α) + α× length(p) (1)

using the weighting constant α. To meet the requirements of

quick reaction time and stability, the algorithm uses different

weights for interactive an non-interactive regions – α = 0.6 for
non-interactive regions and α = 0.05 for interactive regions

(see [9] for details). Figure 4 shows the EMWA packet length

for the SSH flow in Figure 3.
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Fig. 4. EWMA Packet Length versus Time for Classifying Interactive Flows

C. Identifying greedy/non-greedy flows

The CATNAP greedy/non-greedy classifier first computes

the fair share bitrate (Rnint) for all non-interactive flows as

the threshold to differentiate greedy/non-greedy flows:

Rnint ←
C −

∑
rint

Nnint

(2)

where C is the estimated downlink capacity (see [9] for

details), Nnint is the number of non-interactive flows, and∑
rint is the summation of bitrates for all interactive flows.

Rnint is used as a threshold to differentiate greedy or non-

greedy flows – flows consuming capacity less than Rnint/2
are classified as non-greedy, while flows consuming more

than Rnint/2 are classified as greedy. There should be no

congestion on the wireless AP downlink if all non-interactive

flows transmit underRnint, the non-interactive flow target rate.

After classifying flows as greedy/non-greedy, CATNAP

calculates the fair share rate for greedy flows (Rgreedy):

Rgreedy ←
C −

∑
rint −

∑
rnon−greedy

Ngreedy

(3)

where C is the estimated downlink capacity,
∑

rint totals the
capacity use for all interactive flows,

∑
rnon−greedy is the

capacity use for all non-greedy and non-interactive flows, and

Ngreedy is the count of greedy flows.

D. Treatments

After classifying a flow, CATNAP maps that flow into one of

the treatment methods highlighted by the blue text in Figure 5.

The CATNAP treater pushes interactive flows to the head of

the transmit queue to gain priority over non-interactive flows

that it delays. While the treater drops greedy, non-response-

based UDP flows in proportion to their bitrate excess above the

fair share, it actively slows down greedy, response-based TCP

flows by lowering their advertised window. CATNAP reserves

without limiting the needed capacity of non-greedy flows.

E. Example

The top of Figure 6 repeats Figure 3 while the bottom

provides colored horizontal bars that depict CATNAP’s clas-

sification of this SSH flow over time. Being TCP-based,

CATNAP always classifies the SSH flow as response-based.

Fig. 5. Treatment-Based Traffic Classification

Through 40 seconds of small packets, CATNAP classifies the

flow as interactive, but changes the SSH classification to non-

interactive from time 40-65 seconds as the packets become

large, and then returns it back to non-interactive at time 65

seconds when the packets become small again. As the SSH

flow uses less than its fair share up to time 40 and after

time 65, CATNAP identifies it as non-greedy except during

its greedy stage (time 40-58 seconds). Although not described

here due to lack of space, CATNAP considers flows active

when they have sent packets during the past epoch, so the

bottom bar indicates that CATNAP considers the flow active

except for time period 58-65 seconds.

Fig. 6. CATNAP Classification Example

Figure 7 extends the previous SSH example by adding a

concurrent FTP flow running in the background. The top of

Figure 7 indicates FTP throughput in Mbps over time (in

seconds on the x-axis) in green and SSH throughput over time

as a red line. The bottom of the figure uses colored horizontal

bars to depict the treatment CATNAP applies over time to

the SSH flow. CATNAP does not drop packets from the SSH
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flow. When SSH is interactive, CATNAP pushes the packets

to the head of the queue and when non-interactive, CATNAP

delays SSH packets in favor of any other interactive flows.

CATNAP only reserves capacity when the SSH flow is non-

greedy. When the SSH flow is active, CATNAP fully treats the

flow, otherwise CATNAP yields any SSH reserved capacity to

the remaining active flows.

Fig. 7. CATNAP Treatment Example

III. EXPERIMENTS

We implemented CATNAP in the NS-2 network simu-

lator [1] and evaluated it over a wide range of network

conditions and a variety of applications with diverse QoS

requirements. Due to space limitations, this paper presents

partial results using VoIP, network games, streaming video,

Web and FTP applications (see [9] for the full set of results).

The simulation experiments evaluate the CATNAP AP

against DropTail First-In, First-Out queuing (the default home

AP), and Strict Priority Queuing (SPQ) which serves as a

pre-configured “best case” competitor. Since CATNAP treats

flows, its queue capacity is 1000 packets while DropTail and

SPQ queues are set to the product of the bandwidth and round-

trip time (RTT).

Fig. 8. Experiment Setup

In our simulated topology (see Figure 8), two wireless

nodes, W1 and W2, connect to the access point (AP) from

distances D1 = 5m and D2 = 5m, respectively and com-

municate over a single channel infrastructure network using

either 54 Mbps (IEEE 802.11g) or 11 Mbps (IEEE 802.11b).

To mimic typical APs in homes partitioned into several rooms,

we disable RTS/CTS, set MAC layer retransmissions to 4, set

beacon frames to be sent every 100 milliseconds (ms), and

set the NS-2 path loss exponent to 4.0 and the shadowing

deviation to 7.0.

The wireless AP connects to the gateway via a 100 Mbps

duplex Ethernet link with 1 ms latency and the gateway

communicates with multiple wired servers over symmetric,

100 Mbps links with various latencies of L1 to Ln. Our

experiments set short, one-way latencies to 10 ms (half of the

RTT mode measured over residential networks [11]) and long,

one-way latencies to 102.5 ms. One wireless background client

runs an FTP download from a server to induce congestion into

the simulation experiments. In general, the remaining wireless

clients serve as destinations for the UDP-based network game,

UDP-based VoIP, TCP-based Web and TCP-based video flows,

respectively. Due to space constraints, this paper reports only

on experiments where a single foreground application com-

petes with the background FTP application.

In mixed latency experiments, the foreground flow ex-

periences long latencies while the background application

experiences short latencies. The background flow starts at the

5th second and ends at the 115th second. The VoIP, game or

video flows start at the 10th second, spaced out by 0.3 seconds,

and end at the 110th second. The analysis covers from the 15th

second to the 105th second to measure performance during

steady-state.

The game traffic uses the NS-2 traffic generator for Quake

4 [5], a popular first person shooter game with an Auto

Regressive Moving Average model, and sends packets with

average payload size of 69.5 bytes, excluding headers, every

50 ms. The game client transmits packets with an average

payload size of 64.5 bytes, excluding headers, to the game

server every 10.75 ms. The quality metric for the game session

is the 10th percentile of the G-Model Mean Opinion Score

(MOS) value [18].

Using a traffic generator simulating a G.711 codec, UDP-

based VoIP traffic is simulated by sending a constant bitrate

stream of packets with a 172 byte transport layer payload

between two nodes every 20 ms and passing TCP-based VoIP

packets at the same rate to the NS-2 TCP agent. The VoIP

session quality metric is the 10th percentile of the MOS

produced by the E-Model [3].

Using a third-party plugin [2] based on frame sizes extracted

from traces of Indiana Jones I: Raiders of the Lost Ark, the

experiments simulate video traffic encoded in a single layer,

Common Intermediate Format (CIF) at 30 frames per second

(fps) with a resolution of 352 × 288 pixels. The Group of

Pictures (GoP) consists of 16 frames with three B-frames

between each pair of I/P frames. The quantization scales for I,

P, and B frames are 10, 10, and 12, respectively. The average

frame rate is the video session quality metric.

The Web traffic uses an NS-2 traffic generator based on a

previously developed model [8]. The sequence of the simulated

Web session assumes that all objects in the requested Web
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page are on the same Web server, and the Web client and

server simulate a persistent, pipelined HTTP/1.1 connection.

After connecting to the Web server, the Web client sends

a request to the Web server which replies with one HTML

object. Upon receiving the HTML object, the Web client

calculates the number and size of each embedded object, and

sends the corresponding requests to the Web server to retrieve

the embedded objects. The response time between the initial

client request and when the client receives the last embedded

object is the Web session quality.

IV. RESULTS

This section presents results for two-client NS-2 exper-

iments where flow 2 is always an FTP running in the

background. Note SPQ always gives priority to flow 1, the

foreground application, and the background FTP flow always

sees short latencies in mixed latency experiments to induce

congestion on the foreground flow.

Figure 9 graphs cumulative throughput for two simultaneous

FTP flows on the y-axis. The x-axis has three clusters: left has

both flows with short latencies, right has both flows with long

latencies and the middle has flow 2 with short latency and flow

1 with long latency. Each cluster depicts CATNAP, DropTail

and SPQ performance. The DropTail AP provides fair capacity

allocation in the short case, but yields unequal throughputs

in the mixed and long cases. SPQ’s prioritization gives unfair

treatment in the short and long cases, but CATNAP treats both

flows fairly regardless of the latency.
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Fig. 9. Average Throughput for Two FTP Flows (54 Mbps link)

Figure 10 displays performance as the 10th percentile MOS

for a VoIP flow running over UDP on an IEEE 802.11g AP.

VoIP QoS degrades under DropTail with mixed and long

round-trip times. While SPQ is configured to favor VoIP,

CATNAP provides high MOS values regardless of the round-

trip times and when facing congestion on a 11g AP from the

background FTP flow.

The experiment shown in Figure 11 replaces the VoIP flow

from Figure 10 with a network game flow. In this case,

DropTail yields poor game quality compared to CATNAP and

SPQ when competing with a short latency FTP flow. The game

quality degrades severely under mixed and long latencies in

all cases, however CATNAP is able to provide better QoS

under mixed latencies and slightly better performance under

long latencies.

Figure 12 displays the average response time for a Web

flow to load a page with embedded objects. Regardless of the
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AP’s queuing discipline, the long latency for the Web flow in

both the mixed and long latency cases increases Web response

times dramatically. DropTail has noticeably larger response

times than SPQ or CATNAP in all cases. CATNAP produces

performance similar to SPQ in mixed and long latency cases

and yields the best response time in the short latency case.
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Table I (11 Mbps) and Table II (54 Mbps) provide a

condensed summary to compare DropTail and CATNAP QoS

results for many NS-2 experiments. Each cell in each row in

both tables indicates the percentage improvement of CATNAP

compared with DropTail for the appropriate QoS metric.

Differences greater than 10% are shown in bold. The tables

show that CATNAP always provides better performance than

DropTail and produces particularly high benefits for network

games and VoIP applications under higher latency conditions.

While CATNAP greatly improves Web response times, the

video QoS results are less impressive with CATNAP generat-

ing a significantly higher frame rate only under low capacity

(11 Mbps) and mixed latency conditions.



6

TABLE I
QOS IMPROVEMENT FOR CATNAP OVER DROPTAIL (11 MBPS)

Foreground Quality
Latency Settings

short mixed long

Game w/UDP MOS (10% tail) 32.6% 113.9% 93.7%

Game w/TCP MOS (10% tail) 34.7% 117.7% 111.2%

VoIP w/UDP MOS (10% tail) 5.3% 25.4% 11.6%

VoIP w/TCP MOS (10% tail) 5.2% 29.6% 12.7%

Video w/UDP Fr Rate(10% tail) 11.5% 7.4% 11.1%

Video w/TCP Fr Rate(10% tail) 7.4% 20.0% 3.4%

Web Response Time (sec) 54.6% 55.0% 57.9%

TABLE II
QOS IMPROVEMENT FOR CATNAP OVER DROPTAIL (54 MBPS)

Foreground Quality
Latency Settings

short mixed long

Game w/UDP MOS (10% tail) 58.1% 52.4% 15.7%

Game w/TCP MOS (10% tail) 54.5% 55.6% 53.7%

VoIP w/UDP MOS (10% tail) 1.1% 1.8% 1.6%

VoIP w/TCP MOS (10% tail) 0.2% 0.6% 0.9%

Video w/UDP Fr Rate(10% tail) 0.0% 0.0% 0.0%

Video w/TCP Fr Rate(10% tail) 3.4% 3.4% 0.0%

Web Response Time (sec) 13.6% 48.1% 56.4%

V. CONCLUSIONS

This paper introduces Classification And Treatment iN an

Access Point (CATNAP) as a mechanism designed to auto-

matically classify and treat wireless network applications. De-

signed for low-end devices such as residential APs, CATNAP

consumes a small amount of resources and requires no manual

user configuration.

Extensive simulation experiments of CATNAP demonstrate

it improves application QoS performance over a wide range

of network conditions, especially benefiting network games

and VoIP under high latency conditions. In all experiment

cases, CATNAP provides better performance than DropTail

and similar performance to SPQ, which is only effective with

apriori knowledge and configuration.

Future work could include implementation and evaluation of

CATNAP in an actual AP, perhaps using OpenWrt1 to provide

more detailed evaluation of the resource requirements for the

CATNAP classification and treatment modules.
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