Wireless Sensor Networks (WSNs)
WSN Outline

- Introduction
- Mote Revolution
- Wireless Sensor Network (WSN) Applications
- WSN Details
- Types of Wireless Sensor Networks (WSNs)
 - Tiered Architectures
- Dynamic Cluster Formation
- Power-Aware MAC Protocols
 - S-MAC, T-MAC, LPL, X-MAC
- The Internet of Things
Wireless Sensor Networks

- A distributed connection of nodes that coordinate to perform a common task.
- In many applications, the nodes are battery powered and it is often very difficult to recharge or change the batteries.
- Prolonging network lifetime is a critical issue.
- Sensors often have long period between transmissions (e.g., in seconds).
- Thus, a good WSN MAC protocol needs to be energy efficient.
WSN Outline

- Introduction
- Mote Revolution
- Wireless Sensor Network (WSN) Applications
- WSN Details
 - Types of Wireless Sensor Networks (WSNs)
 - Tiered Architectures
 - Dynamic Cluster Formation
 - Power-Aware MAC Protocols
 - S-MAC, T-MAC, LPL, X-MAC
- The Internet of Things
WSN Applications

- Environmental/ Habitat Monitoring
 - Scientific, ecological applications
 - Non-intrusiveness
 - Real-time, high spatial-temporal resolution
 - Remote, hard-to-access areas
 - Acoustic detection
 - Seismic detection

- Surveillance and Tracking
 - Military and disaster applications
 - Reconnaissance and Perimeter control
 - Structural monitoring (e.g., bridges)
WSN Applications

- “Smart” Environments
 - Precision Agriculture
 - Manufacturing/Industrial processes
 - Inventory (RFID)
 - Process Control
 - Smart Grid

- Medical Applications
 - Hospital/Clinic settings
 - Retirement/Assisted Living settings
LoCal - Smart Grid

Fig. 9. Smart Grid schematic.

Great Duck Island

- 150 sensing nodes deployed throughout the island relay data temperature, pressure, and humidity to a central device.
- Data was made available on the Internet through a satellite link.
Habitat Monitoring

The ZebraNet Project

- Collar-mounted sensors with GPS.
- Use peer-to-peer info communication.
- Monitor zebra movement in Kenya.

Margaret Martonosi
Princeton University
Wildfire Instrumentation System Using Networked Sensors.

Allows predictive analysis of evolving fire behavior.

Firebugs: GPS-enabled, wireless thermal sensor motes based on TinyOS that self-organize into networks for collecting real time data in wild fire environments.

Software architecture: includes several interacting layers (Sensors, Processing of sensor data, Command center).

A project by University of California, Berkeley CA.
Precision Agriculture

- The “Wireless Vineyard”
 - Sensors monitor temperature, moisture.
 - Roger the dog (roaming Base station) collects the data.

Richard Beckwith
Intel Corporation
Camalie Vineyards

Case Study in Crossbow Mote Deployment
Water in the Vineyard
Vineyard Installation

- At each Mote location:
 - 2 soil moisture sensors
 - 12” and 24” depth
 - 1 soil temp sensor to calibrate soil moisture sensors
Power Supply

- 2 month max battery life now with 10 minute sampling interval.
- Decided to use solar power, always there when doing irrigation. Solar cell $10 in small quantities and need a $0.50 regulator.
Network Maps

13 nodes late 2005, 18 nodes in 2006

Irrigation Block Map
A Vision for Wireless MIS

Concept includes smart phone platforms to streamline continuous monitoring.

Figure 1 Hierarchical Scalable Sensor Network Architecture

District Head
Community Head
Neighborhood Sensor Node
Actuator

Concept includes smart phone platforms to streamline continuous monitoring.
Community head: In-body sensor node that communicates with the outside world, and is in direct communication range from other in-body sensors. Community head node is dynamically selected and rotated.

Hierarchy 1: In-body sensors form a 1-hop ad-hoc community network. Can operate in unused 412 MHz spectrum with 802.11e based QoS MAC protocol.

Hierarchy 2: Inter-person communication (district network). Medical data diffusion to central processing facilities using the same band and protocols as the in-body network.

Figure 2: Medical Information System Architecture in Hospital Environment

Health surveillance region provides a multi-hop path from Body Sensor Networks to central data log and processing nodes.
Figure 1. Assisted-living deployment example, showing connections among sensors, body networks, and backbone nodes.
WSNs for Assisted Living

Figure 2. ALARM-NET architecture components and logical topology.
WSNs for Assisted Living

Two-Tiered WSN Architecture

Figure 3. Query processing stack on sensor devices. The Query Processor parses queries, and starts the Sampler, which reads data from the sensor drivers on schedule, generating data that flows up the processing chain toward the Query Processor for reporting.
Berkeley Fall Detection System

Using smart sensors and a camera phone to detect and verify the fall of elderly persons

Figure 1: The Information Technology for Assisted Living at Home (ITALH) system overview
Berkeley Fall Detection System

Figure 2: Fall detector system setup

Figure 3: The Berkeley GPSADXL fall sensor
WSN Outline

- Introduction
- Mote Revolution
- Wireless Sensor Network (WSN) Applications
- WSN Details
- Types of Wireless Sensor Networks (WSNs)
 - Tiered Architectures
- Dynamic Cluster Formation
- Power-Aware MAC Protocols
 - S-MAC, T-MAC, LPL, X-MAC
- The Internet of Things
Another attribute is scalability and adaptability to change in network size, node density and topology.

- In general, nodes can die, join later or be mobile.

- Often high bandwidth is not important.

- Nodes can take advantage of short-range, multi-hop communication to conserve energy.
Sources of energy waste:
- Idle listening, collisions, overhearing and control overhead and overmitting.
- Idle listening dominates (measurements show idle listening consumes between 50-100% of the energy required for receiving.)

Idle listening:: listen to receive possible traffic that is not sent.

Overmitting:: transmission of message when receiver is not ready.
Power Measurements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>CC1000</th>
<th>CC2420</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{tx}</td>
<td>Power in transmitting</td>
<td>31.2mW</td>
<td>52.2mW</td>
</tr>
<tr>
<td>P_{rx}</td>
<td>Power in receiving</td>
<td>22.2mW</td>
<td>56.4mW</td>
</tr>
<tr>
<td>P_{listen}</td>
<td>Power in listening</td>
<td>22.2mW</td>
<td>56.4mW</td>
</tr>
<tr>
<td>P_{sleep}</td>
<td>Power in sleeping</td>
<td>3μW</td>
<td>3μW</td>
</tr>
<tr>
<td>P_{poll}</td>
<td>Power in channel polling</td>
<td>7.4mW</td>
<td>12.3mW</td>
</tr>
<tr>
<td>t_{pl}</td>
<td>Avg. time to poll channel</td>
<td>3ms</td>
<td>2.5ms</td>
</tr>
<tr>
<td>t_{cs}</td>
<td>Avg. carrier sense time</td>
<td>7ms</td>
<td>2ms</td>
</tr>
<tr>
<td>t_B</td>
<td>Time to Tx/Rx a byte</td>
<td>416μs</td>
<td>32μs</td>
</tr>
<tr>
<td>T_p</td>
<td>Channel polling period</td>
<td>Varying</td>
<td>Varying</td>
</tr>
<tr>
<td>T_{data}</td>
<td>Data packet period</td>
<td>Varying</td>
<td>Varying</td>
</tr>
<tr>
<td>r_{data}</td>
<td>Data packet rate ($1/T_{data}$)</td>
<td>Varying</td>
<td>Varying</td>
</tr>
<tr>
<td>L_{data}</td>
<td>Data packet length</td>
<td>50B</td>
<td>50B</td>
</tr>
<tr>
<td>n</td>
<td>Number of neighbors</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1. Symbols used in radio energy analysis, and typical values for the Mica2 radio (CC1000) and an 802.15.4 radio (CC2420)
WSN Communication Patterns

- **Broadcast::** e.g., Base station transmits to all sensor nodes in WSN.

- **Multicast::** sensor transmit to a subset of sensors (e.g. cluster head to cluster nodes)

- **Convergecast::** when a group of sensors communicate to one sensor (BS, cluster head, or data fusion center).

- **Local Gossip::** sensor sends message to neighbor sensors.
Duty cycle: ratio between listen time and the full listen-sleep cycle.

- Central approach - lower the duty cycle by turning the radio off part of the time.

- Three techniques to reduce the duty cycle:
 - TDMA
 - Scheduled contention periods
 - LPL (Low Power Listening)
Techniques to Reduce Idle Listening

- **TDMA** requires cluster-based or centralized control.

- **Scheduling** – ensures short listen period when transmitters and listeners can rendezvous and other periods where nodes sleep (turn off their radios).

- **LPL** – nodes wake up briefly to check for channel activity without receiving data.
 - If channel is idle, node goes back to sleep.
 - If channel is busy, node stays awake to receive data.
 - A long preamble (longer than poll period) is used to assure that preamble intersects with polls.
WSN Outline

- Introduction
- Mote Revolution
- Wireless Sensor Network (WSN) Applications
- WSN Details
 - Types of Wireless Sensor Networks (WSNs)
 - Tiered Architectures
 - Dynamic Cluster Formation
 - Power-Aware MAC Protocols
 - S-MAC, T-MAC, LPL, X-MAC
 - The Internet of Things
Tree Routing

Fig. 1. Simulation scenario: black points represent sensor nodes and edges correspond to parent-child relationships

[Cuomo]
Figure 1: The Mote Herding architecture and its components, the flock, the shepherd and the herd [Stathopoulos]
Dynamic Cluster Formation
Choosing Cluster Heads/
Forming Clusters

Two-tier scheme:
- A fixed number of cluster heads that communicate with BS (base station).
- Nodes in cluster communicate with head (normally TDMA).
- TDMA allows fixed schedule of slots for sensor to send to cluster head and receive head transmissions.
Choosing Cluster Heads/ Forming Clusters

- Periodically select new cluster heads to minimize power consumption and maximize WSN lifetime.
- More complex problem when size of cluster changes dynamically.
- As time goes by, some sensor nodes die!
- Not worried about coverage issues!
Dynamic Cluster Formation

- TDMA cluster algorithms:
 - LEACH, Bluetooth, ...

- Rick Skowyra’s MS thesis:
 'Energy Efficient Dynamic Reclustering Strategy for WSNs'
 - 'Leach-like' with a fitness function and periodic reclustering.
 - He designed a distributed genetic algorithm to speed the reclustering time.
Power-Aware MAC Protocols
<table>
<thead>
<tr>
<th>Year</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>PAMAS</td>
</tr>
<tr>
<td>1998</td>
<td>PAMAS</td>
</tr>
<tr>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>SMACS</td>
</tr>
<tr>
<td>2001</td>
<td>S-MAC</td>
</tr>
<tr>
<td>2002</td>
<td>LPL</td>
</tr>
<tr>
<td>2003</td>
<td>DE-MAC</td>
</tr>
<tr>
<td>2003</td>
<td>TinyOS-MAC</td>
</tr>
<tr>
<td>2004</td>
<td>AI-LMAC</td>
</tr>
<tr>
<td>2004</td>
<td>L-MAC</td>
</tr>
<tr>
<td>2005</td>
<td>Bit-MAC</td>
</tr>
<tr>
<td>2005</td>
<td>RateEst-MAC</td>
</tr>
</tbody>
</table>

CSMA/ARC

- LPL
- NPSM
- STEM
- Sift
- T-MAC
- EMACs
- Sift
- T-MAC
- D-MAC
- DSMAC
- B-MAC
- TA
- WiseMAC
- MS-MAC
- P-MAC
- FLAMA
- M-MAC
- P-MAC
- SeeSaw
- Z-MAC

Advanced Computer Networks

Wireless Sensor Networks
Power Aware MAC Protocols

<table>
<thead>
<tr>
<th>Year</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>PSM</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>SCP-MAC</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>SS-TDMA</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>TRAMA</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>X-MAC</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>C-MAC</td>
<td>Crankshaft</td>
</tr>
<tr>
<td>2007</td>
<td>RMAC</td>
<td>Sea-MAC</td>
</tr>
<tr>
<td>2007</td>
<td>AS-MAC</td>
<td>DS-MAC</td>
</tr>
<tr>
<td>2007</td>
<td>RI-MAC</td>
<td>W-MAC</td>
</tr>
<tr>
<td>2008</td>
<td>ELE-MAC</td>
<td>MD-MAC</td>
</tr>
<tr>
<td>2008</td>
<td>Tree-MAC</td>
<td>WUR-MAC</td>
</tr>
<tr>
<td>2009</td>
<td>A-MAC</td>
<td>BuzzBuzz</td>
</tr>
<tr>
<td>2009</td>
<td>PE-MAC</td>
<td>VL-MAC</td>
</tr>
<tr>
<td>2010</td>
<td>AdaptAS-MAC</td>
<td>BAS-MAC</td>
</tr>
<tr>
<td>2010</td>
<td>MC-LMAC</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>AdaptAS-MAC</td>
<td>Contiki-MAC</td>
</tr>
<tr>
<td>2011</td>
<td>MC-LMAC</td>
<td></td>
</tr>
</tbody>
</table>
Three approaches to saving power:

1. **TDMA**: TRAMA, EMACs, L-MAC

2. **Schedule**: PAMAS, S-MAC, T-MAC, D-MAC, PMAC, SCP-MAC, Crankshaft, AS-MAC

3. **Low Power Listening**: LPL, B-MAC, WiseMAC, X-MAC

Newest approaches include

4. **Receiver Initiated**: RI-MAC, A-MAC
Sensor-MAC (S-MAC)

- All nodes periodically listen, sleep and wakeup. Nodes **listen and send** during the active period and **turn off** their radios during the sleep period.
- The beginning of the active period is a SYNC period used to accomplish periodic synchronization and remedy clock drift. Nodes broadcast SYNC frames.
- Following the SYNC period, data may be transferred for the remainder of the fixed-length active period using RTS/CTS for unicast transmissions.
Sensor-MAC (S-MAC)

- Long frames are fragmented and transmitted as a burst.

- SMAC controls the duty cycle to trade off energy for delay.

- However, as density of WSN grows, SMAC incurs additional overhead in maintaining neighbors' schedules.
Figure 1: The S-MAC duty cycle; the arrows indicate transmitted and received messages; note that messages come closer together.
Timeout-MAC (T-MAC)

- TMAC employs an adaptive duty cycle by using a very short listening window at the beginning of each active period.

- After the SYNC portion of the active period, RTS/CTS is used in a listening window. If no activity occurs within a timeout interval (15 ms), the node goes to sleep.

- TMAC saves power at the cost of reduced throughput and additional delay.
Figure 2: The basic T-MAC protocol scheme, with adaptive active times.
LPL and SCP-MAC

(a) Low-power listening (LPL)

(b) Synchronized channel polling (SCP)

Figure 1. Sender and receiver synchronization schemes.
X-MAC

Figure 1. Comparison of the timelines between LPL’s extended preamble and X-MAC’s short preamble approach.
X-MAC

- X-MAC is an LPL variant that aims to address:
 - Overhearing, excessive preamble and incompatibility with packetizing radios (e.g., CC2420).
- Uses strobed preambles where preambles contain receiver(s) address information.
- Addresses multiple transmitters to one receiver by having subsequent transmitters view the ACK, back-off and then send without any preamble.
WSN Outline

- Introduction
- Mote Revolution
- Wireless Sensor Network (WSN) Applications
- WSN Details
- Types of Wireless Sensor Networks (WSNs)
- Tiered Architectures
- Dynamic Cluster Formation
- Power-Aware MAC Protocols
 - S-MAC, T-MAC, LPL, X-MAC
- The Internet of Things
Steps for IoT Interoperability

1. Interoperability at the IPv6 layer
 - Contiki OS provides IPv6 Ready stack.

2. Interoperability at the routing layer
 - Interoperability between RPL implementations in Contiki and TinyOS have been demonstrated.

3. low-power interoperability
 - Radios must be efficiently duty cycled.
 - Not yet done!!
Internet of Things Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Example protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>HTTP, CoAP</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>Network</td>
<td>IPv6, RPL, 6lowpan</td>
</tr>
<tr>
<td>MAC</td>
<td>CSMA</td>
</tr>
<tr>
<td>Radio duty cycling</td>
<td>X-MAC/ContikiMAC</td>
</tr>
<tr>
<td>Link</td>
<td>IEEE 802.15.4</td>
</tr>
</tbody>
</table>

Figure 1. The low-power IPv6 stack consists of the standard IPv6 protocols at the network layer and transport layers, and of new protocols from the network layer and down.
WSN Summary

- Introduction
- Mote Revolution
- Wireless Sensor Network (WSN) Applications
- WSN Details
- Types of Wireless Sensor Networks (WSNs)
- Tiered Architectures
- Dynamic Cluster Formation
- Power-Aware MAC Protocols
 - S-MAC, T-MAC, LPL, X-MAC
- The Internet of Things