Fast Ethernet
and
Gigabit Ethernet
Fast/Gigabit Ethernet Outline

- **Fast Ethernet**
 - 100 BASE T4
 - 8B/6T encoding
 - 100 BASE TX
 - 100 BASE FX
 - Collision domains

- **Gigabit Ethernet**
 - 1000 BASE SX
 - 8B/10B encoding
 - Fiber Channel
Fast/Gigabit Ethernet Outline

- Gigabit Ethernet (continued)
 - 1000 BASE LX
 - 1000 BASE T
 - Carrier Extension
 - Frame Bursting
 - Buffered Distributor
- 10 Gbps Ethernet
- 100 Gbps Ethernet
High-Speed LAN Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Fast Ethernet</th>
<th>Gigabit Ethernet</th>
<th>Fibre Channel</th>
<th>Wireless LAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>100 Mbps</td>
<td>1 Gbps, 10 Gbps, 100 Gbps</td>
<td>100 Mbps - 3.2 Gbps</td>
<td>1 Mbps - 54 Mbps</td>
</tr>
<tr>
<td>Transmission Media</td>
<td>UTP, STP, optical fiber</td>
<td>UTP, shielded cable, optical fiber</td>
<td>Optical fiber, coaxial cable, STP</td>
<td>2.4-GHz, 5-GHz microwave</td>
</tr>
<tr>
<td>Access Method</td>
<td>CSMA/CD</td>
<td>Switched</td>
<td>Switched</td>
<td>CSMA/Polling</td>
</tr>
<tr>
<td>Supporting Standard</td>
<td>IEEE 802.3</td>
<td>IEEE 802.3</td>
<td>Fibre Channel Association</td>
<td>IEEE 802.11</td>
</tr>
</tbody>
</table>
100 Mbps Fast Ethernet

Transmission medium
- **100BASE-TX**: 2 pair, STP
- **100BASE-FX**: 2 pair, Category 5 UTP
- **100BASE-T4**: 2 optical fibers
- **100BASE-T4**: 4 pair, Category 3, 4, or 5 UTP

Signaling technique
- **100BASE-TX**: MLT-3
- **100BASE-FX**: MLT-3
- **100BASE-T4**: 4B5B, NRZI
- **100BASE-T4**: 8B6T, NRZ

Data rate
- **100BASE-TX**: 100 Mbps
- **100BASE-FX**: 100 Mbps
- **100BASE-T4**: 100 Mbps
- **100BASE-T4**: 100 Mbps

Maximum segment length
- **100BASE-TX**: 100 m
- **100BASE-FX**: 100 m
- **100BASE-T4**: 100 m
- **100BASE-T4**: 100 m

Network span
- **100BASE-TX**: 200 m
- **100BASE-FX**: 200 m
- **100BASE-T4**: 400 m
- **100BASE-T4**: 200 m

Fast Ethernet concept facilitated by 10Mbps/100Mbps Adapter Cards

DCC 9th Ed. Stallings
Fast Ethernet (100BASE-T)

How to achieve 100 Mbps capacity?

Media Independent Interface provides three choices.

- LLC
- MAC

Convergence Sublayer

Media Independent Interface

Media Dependent Sublayer

Data Link Layer

Physical Layer
- UTP Cable has a **30 MHz** limit.

→ Not feasible to use clock encoding (i.e., cannot use Manchester encoding)

- Instead use **bit encoding schemes** with sufficient transitions for receiver to maintain clock synchronization.
100 BASE T4

- Spec says can use four separate twisted pairs of Cat 3 UTP (now Cat 5e).
- Utilize three pair in both directions (at 33 1/3 Mbps) with other pair for carrier sense/collision detection.
- Three-level ternary code is used 8B/6T:

Prior to transmission each set of 8 bits is converted into 6 ternary symbols.
8B6T Transmissions

Figure 16.12 8B6T Transmission Scheme
100 BASE T4

- The signaling rate becomes
 \[
 \frac{100 \times 6/8}{3} = 25 \text{ MHz}
 \]

- Three signal levels: +V, 0, -V
- Codewords are selected such that line is d.c. balanced.
- All codewords have a combined weight of 0 or 1.
100 BASE T4

- $3^6 = 729$ possible codewords.
- Only 256 codewords are required, hence they are selected:
 - To achieve d.c. balance.
 - To have at least two signal transitions within them (for receiver clock synchronization).
- To solve d.c. 'wander', whenever a string of codewords with +1 are sent, alternate codewords (inverted before transmission) are used.
- To reduce latency, ternary symbols are sent staggered on the three lines.
8B6T Codes

Table 16.6 Portion of 8B6T Code Table

<table>
<thead>
<tr>
<th>Data Octet</th>
<th>6T Code Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>++00+</td>
<td>10</td>
<td>+000-</td>
<td>20</td>
<td>0000+</td>
<td>30</td>
<td>++00-</td>
</tr>
<tr>
<td>01</td>
<td>0++0-</td>
<td>11</td>
<td>+000-</td>
<td>21</td>
<td>--00+</td>
<td>31</td>
<td>0++0-</td>
</tr>
<tr>
<td>02</td>
<td>++0--</td>
<td>12</td>
<td>+000-</td>
<td>22</td>
<td>++0--</td>
<td>32</td>
<td>++0--</td>
</tr>
<tr>
<td>03</td>
<td>0++0+</td>
<td>13</td>
<td>000-</td>
<td>23</td>
<td>++0--</td>
<td>33</td>
<td>0+0--</td>
</tr>
<tr>
<td>04</td>
<td>0+00+</td>
<td>14</td>
<td>000-</td>
<td>24</td>
<td>0000+</td>
<td>34</td>
<td>0+00+</td>
</tr>
<tr>
<td>05</td>
<td>0++0-</td>
<td>15</td>
<td>+000-</td>
<td>25</td>
<td>0000+</td>
<td>35</td>
<td>0+00+</td>
</tr>
<tr>
<td>06</td>
<td>++00-</td>
<td>16</td>
<td>+000-</td>
<td>26</td>
<td>0000+</td>
<td>36</td>
<td>++00-</td>
</tr>
<tr>
<td>07</td>
<td>0+++0</td>
<td>17</td>
<td>000-</td>
<td>27</td>
<td>--++++</td>
<td>37</td>
<td>0+++0</td>
</tr>
<tr>
<td>08</td>
<td>+000-</td>
<td>18</td>
<td>000-</td>
<td>28</td>
<td>--0++</td>
<td>38</td>
<td>000+</td>
</tr>
<tr>
<td>09</td>
<td>0+++0</td>
<td>19</td>
<td>000-</td>
<td>29</td>
<td>--0+0</td>
<td>39</td>
<td>0+00+</td>
</tr>
<tr>
<td>0A</td>
<td>+000-</td>
<td>1A</td>
<td>000-</td>
<td>2A</td>
<td>--0+0</td>
<td>3A</td>
<td>+000-</td>
</tr>
<tr>
<td>0B</td>
<td>0++0+</td>
<td>1B</td>
<td>000+</td>
<td>2B</td>
<td>0+++0</td>
<td>3B</td>
<td>0++0+</td>
</tr>
<tr>
<td>0C</td>
<td>+000+</td>
<td>1C</td>
<td>000+</td>
<td>2C</td>
<td>0+++0</td>
<td>3C</td>
<td>+0+0-</td>
</tr>
<tr>
<td>0D</td>
<td>0+++0</td>
<td>1D</td>
<td>000+</td>
<td>2D</td>
<td>--0++</td>
<td>3D</td>
<td>0+++0</td>
</tr>
<tr>
<td>0E</td>
<td>+000+</td>
<td>1E</td>
<td>000+</td>
<td>2E</td>
<td>--0++</td>
<td>3E</td>
<td>+0+0-</td>
</tr>
<tr>
<td>0F</td>
<td>0+++0</td>
<td>1F</td>
<td>000+</td>
<td>2F</td>
<td>0+++0</td>
<td>3F</td>
<td>+0+0-</td>
</tr>
</tbody>
</table>
100 BASE T4

- Ethernet Interframe gap of 9.6 microseconds becomes 960 nanoseconds in Fast Ethernet.
- 100 meters - max distance to hub
- 200 meters max between stations.
- Maximum of two Class II repeaters.
100 BASE TX

- Uses **two pair** of twisted pair, one pair for transmission and one pair for reception.
- Uses either STP or Cat 5e UTP.
- Starts from 4B/5B NRZI encoding.
- Converts to MLT-3 signaling scheme that involves **three voltages**.
MLT-3 Encoder

Figure 16.10 MLT-3 Encoder State Diagram
MLT-3 Encoder

Figure 16.11 Example of MLT-3 Encoding
100 BASE FX

- Uses two optical fibers, one for transmission and one for reception.

- Uses FDDI technology of converting 4B/5B to NRZI code group streams into optical signals.
Fast Ethernet Repeaters and Switches

- **Class I Repeater** - supports unlike physical media segments (only one per collision domain).

- **Class II Repeater** - limited to single physical media type (there may be two repeaters per collision domain).

- **Switches** - to improve performance can add full-duplex and have auto-negotiation for speed mismatches.
Collision Domains

Figure 7.9 Collision Domains
Figure 7.10 100BASE-T Repeater Types
Full Duplex Operation

- Traditional Ethernet is half duplex.
- Using full-duplex, a station can transmit and receive simultaneously.
- 100 Mbps Ethernet (in full-duplex mode) gives a theoretical transfer rate of 200 Mbps.
- Stations must have full-duplex adapter cards.
- Stations must use switching hub.
In February 1997 the Gigabit Ethernet Alliance announced that IEEE802.3z Task Force met to review the first draft of the Gigabit Ethernet Standard.

According to IDC by the end of 1997 85% of all network connections used Ethernet.

Higher capacity Ethernet was appealing because network managers can leverage their investment in staff skills and training.

1000 BASE X (IEEE802.3z) was ratified in June 1998.
Gigabit Ethernet (1000 BASE X)

- Provides speeds of 1000 Mbps (*i.e.*, one billion bits per second capacity) for half-duplex and full-duplex operation.
- Uses Ethernet frame format and MAC technology
 - CSMA/CD access method with support for *one* repeater per collision domain.
 - Backward compatible with 10BASE-T and 100BASE-T.
- Uses 802.3 full-duplex Ethernet technology.
- Uses 802.3x flow control.
- All Gigabit Ethernet configurations are point-to-point!
Figure 4-22. (a) A two-station Ethernet. (b) A multistation Ethernet.
Gigabit Ethernet Architecture Standard

Media Access Control (MAC)
full duplex and/or half duplex

Gigabit Media Independent Interface (GMII)
(optional)

1000 Base - X PHY
8B/10B auto-negotiation

1000 Base-LX
Fiber optic transceiver
Single Mode or Multimode Fiber

1000 Base-SX
Fiber optic transceiver
Multimode Fiber

1000 Base-CX
Copper transceiver
Shielded Copper Cable

1000 Base T
PCS

1000 Base T
PMA
transceiver

Unshielded twisted pair

IEEE 802.3z

Source - IEEE
Gigabit Ethernet Technology

<table>
<thead>
<tr>
<th>Name</th>
<th>Cable</th>
<th>Max. segment</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000Base-SX</td>
<td>Fiber optics</td>
<td>550 m</td>
<td>Multimode fiber (50, 62.5 microns)</td>
</tr>
<tr>
<td>1000Base-LX</td>
<td>Fiber optics</td>
<td>5000 m</td>
<td>Single (10 μ) or multimode (50, 62.5 μ)</td>
</tr>
<tr>
<td>1000Base-CX</td>
<td>2 Pairs of STP</td>
<td>25 m</td>
<td>Shielded twisted pair</td>
</tr>
<tr>
<td>1000Base-T</td>
<td>4 Pairs of UTP</td>
<td>100 m</td>
<td>Standard category 5 UTP</td>
</tr>
</tbody>
</table>

* Based on Fiber Channel physical signaling technology.

Figure 4-23. Gigabit Ethernet cabling.

1000 BASE **LX** fiber – long wavelength
1000 BASE **SX** fiber – short wavelength
1000 BASE **T** copper – unshielded twisted pair
1000 BASE **CX** copper – shielded twisted pair
Gigabit Ethernet - Physical

- **1000BASE-LX**
 - 10-μm single-mode fiber
 - 50-μm multimode fiber
 - 62.5-μm multimode fiber

- **1000BASE-SX**
 - 50-μm multimode fiber
 - 62.5-μm multimode fiber

- **1000BASE-T**
 - Category 5 UTP

- **1000BASE-CX**
 - Shielded cable

Maximum distance:
- 25 m, 50 m, 250 m, 500 m, 2500 m, 5000 m
Gigabit Ethernet (1000 BASE-T)

- **Gigabit Media Independent Interface (GMII)**
 - **Logical Link Control (LLC)**
 - **Media Access Control (MAC)**
 - **Data Link Layer**
 - **Physical Layer**
 - **Medium Dependent Interface**
Gigabit Media Independent Interface (GMII)

- Allows any physical layer to be used with a given MAC.
- Namely, **Fiber Channel** physical layer can be used with **CSMA/CD**.
- Permits both full-duplex and half-duplex.
1000 BASE LX

Long wavelength

- Supports duplex links up to 5000 meters.
- 1270-1355 nm range; 1300 nm wavelength using lasers.
- Fiber Channel technology
- PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line.
- Either single mode or multimode fiber.
8B/10B Encoder
When the encoder has a choice for codewords, it always chooses the codeword that moves in the direction of balancing the number of 0s and 1s. This keeps the DC component of the signal as low as possible.

Examples of Eight-Bit Code Groups

<table>
<thead>
<tr>
<th>Code Group</th>
<th>Actual Byte</th>
<th>RD-</th>
<th>RD+</th>
<th>Effect on</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.0</td>
<td>000 000001</td>
<td>011101 0100</td>
<td>100101 1011</td>
<td>same</td>
</tr>
<tr>
<td>D4.1</td>
<td>001 00100</td>
<td>110101 1001</td>
<td>001010 1001</td>
<td>flip</td>
</tr>
<tr>
<td>D28.5</td>
<td>101 11100</td>
<td>001110 1010</td>
<td>001110 1010</td>
<td>same</td>
</tr>
<tr>
<td>D28.5</td>
<td>101 11100</td>
<td>001111 1010</td>
<td>110000 0101</td>
<td>flip</td>
</tr>
</tbody>
</table>
1000 BASE SX

Short wavelength

- Supports duplex links up to 275 meters.
- 770-860 nm range; 850 nm laser wavelength
- (FC) *Fiber Channel technology*
- PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line.
- **Only** multimode fiber
- Cheaper than LX.
1000 BASE CX

'Short haul' copper jumpers

- Shielded twisted pair.
- 25 meters or less typically within wiring closet.
- PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line.
- Each link is composed of a separate shielded twisted pair running in each direction.
1000 BASE T

Twisted Pair

- Four pairs of Category 5 UTP.
- IEEE 802.3ab ratified in June 1999.
- Category 5, 6 and 7 copper up to 100 meters.
- This requires extensive signal processing.
Gigabit Ethernet compared to Fiber Channel

- Since Fiber Channel (FC) already existed, the idea was to immediately leverage physical layer of FC into Gigabit Ethernet.

- The difference is that fiber channel was viewed as specialized for high-speed I/O lines. Gigabit Ethernet is general purpose and can be used as a high-capacity switch.
Gigabit Ethernet

- Initially viewed as LAN solution while ATM is now a WAN solution.
- Gigabit Ethernet can be shared (hub) or switched.

 • Shared Hub
 - Half duplex: CSMA/CD with MAC changes:
 - Carrier Extension
 - Frame Bursting

 • Switch
 - Full duplex: Buffered repeater called {Buffered Distributor}
Figure 4-22. (a) A two-station Ethernet. (b) A multistation Ethernet.
Carrier Extension

- For **10BaseT**: 2.5 km max; slot time = 64 bytes
- For **1000BaseT**: 200 m max; slot time = 512 bytes
- **Carrier Extension**: continue transmitting control.
- This permits minimum 64-byte frame to be handled.
- Control characters discarded at destination.
- For small frames, LAN throughput is only slightly better than Fast Ethernet.
Frame Bursting

- Source sends out burst of frames without relinquishing control of the network.
- Uses Ethernet Interframe gap filled with extension bits (96 bits).
- Maximum frame burst is 8192 bytes.
- Three times more throughput for small frames.
A buffered distributor is a new type of 802.3 hub where incoming frames are buffered in FIFO queues.

- Each port has an input FIFO queue and an output FIFO queue.
- A frame arriving at an input queue is forwarded to all output queues, except the one on the incoming port.

CSMA/CD arbitration is done inside the distributor to forward the frames to the output FIFOs.
Since collisions can no longer occur external to the distributor on the links, the distance restrictions no longer apply.

Since the sender can flood an input FIFO, 802.3x frame-based flow control is used to handle congestion between the sending station and the input port.

All links are full-duplex.
Buffered Distributor

Buffered/Full duplex Distributor:
This is a multi-port repeater with full-duplex links.
Figure 16.4 Example Gigabit Ethernet Configuration
10 Gbps Ethernet

- Growing interest in 10 Gbps Ethernet.
 - high-speed backbone use
 - future wider deployment
- Provides an alternative to ATM and other WAN technologies.
- Viewed as a uniform technology for LAN, MAN, or WAN.

- advantages of 10 Gbps Ethernet
 - no expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells.
 - IP and Ethernet together offers QoS and traffic policing that approach ATM.
 - have a variety of standard optical interfaces.
10Gbps Ethernet Configurations
10Gbps Ethernet Options

- 10GBASE-S (850 nm)
 - 50-µm multimode fiber
 - 62.5-µm multimode fiber

- 10GBASE-L (1310 nm)
 - Single-mode fiber

- 10GBASE-E (1550 nm)
 - Single-mode fiber

- 10GBASE-LX4 (1310 nm)
 - 50-µm multimode fiber
 - 62.5-µm multimode fiber

Maximum distance:
- 10 m
- 100 m
- 300 m
- 1 km
- 10 km
- 40 km
- 100 km
preferred technology for wired LAN.
preffered carrier for bridging wireless technologies into local Ethernet networks.
cost-effective, reliable and interoperable.

popularity of Ethernet technology:
• availability of cost-effective products
• reliable and interoperable network products
• variety of vendors
100 Gbps Ethernet

Figure 16.8 Example 100-Gbps Ethernet Configuration for Massive Blade Server Site
Fast/Gigabit Ethernet Summary

- **Fast Ethernet**
 - 100 BASE T4
 - 8B/6T encoding
 - 100 BASE TX
 - 100 BASE FX
 - **Collision domains**

- **Gigabit Ethernet**
 - 1000 BASE SX
 - 8B/10B encoding
 - Fiber Channel
Fast/Gigabit Ethernet Summary

- Gigabit Ethernet (continued)
 - 1000 BASE LX
 - 1000 BASE T
 - 1000 BASE CX
 - Carrier Extension
 - Frame Bursting
 - Buffered Distributor

- 10 Gbps Ethernet
- 100 Gbps Ethernet