The Mote Revolution:
Low Power Wireless Sensor Network Devices

University of California, Berkeley

Joseph Polastre
Robert Szewczyk
Cory Sharp
David Culler

Hot Chips 2004 : Aug 22-24, 2004
Outline

- Trends and Applications
- Mote History and Evolution
- Design Principles
- Telos
Faster, Smaller, Numerous

- **Moore’s Law**
 - “Stuff” (transistors, etc) doubling every 1-2 years

- **Bell’s Law**
 - New computing class every 10 years

Streaming Data to/from the Physical World

Hot Chips 2004 : Aug 22-24, 2004
Applications

- Environmental Monitoring
 - Habitat Monitoring
 - Integrated Biology
 - Structural Monitoring

- Interactive and Control
 - Pursuer-Evader
 - Intrusion Detection
 - Automation

Hot Chips 2004 : Aug 22-24, 2004
Open Experimental Platform

Networking

TinyOS

Services

WeC 99
“Smart Rock”

Rene 11/00

Dot 9/01

Mica 1/02

Simple, low-power
radio
10 kbps ASK

EEPROM (32 KB)

Small microcontroller
8 kB code
512 B data

Designed for experimentation
-sensor boards
-power boards

Demonstrate scale

NEST open exp. Platform
128 kB code, 4 kB data
40kbps OOK/ASK radio
512 kB Flash

Simple sensors

Commercial Off The Shelf Components (COTS)
Hot Chips 2004 : Aug 22-24, 2004
Mote Evolution

<table>
<thead>
<tr>
<th>Mote Type</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>WeC</td>
<td>1998</td>
</tr>
<tr>
<td>René</td>
<td>1999</td>
</tr>
<tr>
<td>René 2</td>
<td>2000</td>
</tr>
<tr>
<td>Dot</td>
<td>2000</td>
</tr>
<tr>
<td>Mica</td>
<td>2001</td>
</tr>
<tr>
<td>Mica2Dot</td>
<td>2002</td>
</tr>
<tr>
<td>Mica 2</td>
<td>2002</td>
</tr>
<tr>
<td>Telos</td>
<td>2004</td>
</tr>
</tbody>
</table>

Microcontroller

<table>
<thead>
<tr>
<th>Type</th>
<th>AT90LS8535</th>
<th>ATmega163</th>
<th>ATmega128</th>
<th>TI MSP430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program memory (KB)</td>
<td>8</td>
<td>16</td>
<td>128</td>
<td>60</td>
</tr>
<tr>
<td>RAM (KB)</td>
<td>0.5</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Active Power (mW)</td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>Sleep Power (μW)</td>
<td>45</td>
<td>45</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Wakeup Time (μs)</td>
<td>1000</td>
<td>36</td>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>

Nonvolatile storage

<table>
<thead>
<tr>
<th>Chip</th>
<th>24LC256</th>
<th>AT45DB041B</th>
<th>ST M24M01S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection type</td>
<td>I²C</td>
<td>SPI</td>
<td>I²C</td>
</tr>
<tr>
<td>Size (KB)</td>
<td>32</td>
<td>512</td>
<td>128</td>
</tr>
</tbody>
</table>

Communication

<table>
<thead>
<tr>
<th>Radio</th>
<th>TR1000</th>
<th>TR1000</th>
<th>CC1000</th>
<th>CC2420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (kbps)</td>
<td>10</td>
<td>40</td>
<td>38.4</td>
<td>250</td>
</tr>
<tr>
<td>Modulation type</td>
<td>OOK</td>
<td>ASK</td>
<td>FSK</td>
<td>O-QPSK</td>
</tr>
<tr>
<td>Receive Power (mW)</td>
<td>9</td>
<td>12</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>Transmit Power at 0dBm (mW)</td>
<td>36</td>
<td>36</td>
<td>42</td>
<td>35</td>
</tr>
</tbody>
</table>

Power Consumption

| Minimum Operation (V) | 2.7 | 2.7 | 2.7 | 1.8 |
| Total Active Power (mW) | 24 | 27 | 44 | 89 |

Expansion and Sensor Interface

<table>
<thead>
<tr>
<th>Expansion</th>
<th>none</th>
<th>51-pin</th>
<th>51-pin</th>
<th>51-pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>IEEE 1284 (programming) and RS232 (requires additional hardware)</td>
<td>USB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Sensors</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Low Power Operation

- **Efficient Hardware**
 - Integration and Isolation
 - Complementary functionality (DMA, USART, etc)
 - Selectable Power States (Off, Sleep, Standby)
 - Operate at low voltages and low current
 - Run to cut-off voltage of power source

- **Efficient Software**
 - Fine grained control of hardware
 - Utilize wireless broadcast medium
 - Aggregate
Typical WSN Application

- **Periodic**
 - Data Collection
 - Network Maintenance
 - *Majority of operation*

- **Triggered Events**
 - Detection/Notification
 - *Infrequently occurs*
 - *But… must be reported quickly and reliably*

- **Long Lifetime**
 - Months to Years without changing batteries
 - Power management is the key to WSN success

Hot Chips 2004 : Aug 22-24, 2004
Design Principles

Key to Low Duty Cycle Operation:

- Sleep – majority of the time
- Wakeup – quickly start processing
- Active – minimize work & return to sleep
Sleep

- Majority of time, node is asleep
 - >99%

- Minimize sleep current through
 - Isolating and shutting down individual circuits
 - Using low power hardware
 - Need RAM retention

- Run auxiliary hardware components from low speed oscillators (typically 32kHz)
 - Perform ADC conversions, DMA transfers, and bus operations while microcontroller core is stopped
Wake up

- Overhead of switching from Sleep to Active Mode
- Microcontroller
- Radio (FSK)

292 ns
10ns – 4ms typical

2.5 ms
1 – 10 ms typical

Hot Chips 2004 : Aug 22-24, 2004
Active

- Microcontroller
 - Fast processing, low active power
 - Avoid external oscillators

- Radio
 - High data rate, low power tradeoffs
 - Narrowband radios
 - Low power, lower data rate, simple channel encoding, faster startup
 - Wideband radios
 - More robust to noise, higher power, high data rates

- External Flash (stable storage)
 - Data logging, network code reprogramming, aggregation
 - High power consumption
 - Long writes

- Radio vs. Flash
 - 250kbps radio sending 1 byte
 - Energy : 1.5μJ
 - Duration : 32μs
 - Atmel flash writing 1 byte
 - Energy : 3μJ
 - Duration : 78μs

Hot Chips 2004 : Aug 22-24, 2004
Telos Platform

- A new platform for low power research
 - Monitoring applications:
 - Environmental
 - Building
 - Tracking

- Long lifetime, low power, low cost

- Built from application experiences and low duty cycle design principles

- Robustness
 - Integrated antenna
 - Integrated sensors
 - Soldered connections

- Standards Based
 - IEEE 802.15.4
 - USB

- IEEE 802.15.4
 - CC2420 radio
 - 250kbps
 - 2.4GHz ISM band

- TI MSP430
 - Ultra low power
 - 1.6μA sleep
 - 460μA active
 - 1.8V operation

Open embedded platform with open source tools, operating system (TinyOS), and designs.
Low Power Operation

- TI MSP430 -- Advantages over previous motes
 - 16-bit core
 - 12-bit ADC
 - 16 conversion store registers
 - Sequence and repeat sequence programmable
 - < 50nA port leakage (vs. 1μA for Atmels)
 - Double buffered data buses
 - Interrupt priorities
 - Calibrated DCO

- Buffers and Transistors
 - Switch on/off each sensor and component subsystem

Hot Chips 2004 : Aug 22-24, 2004
Minimize Power Consumption

- Compare to MicaZ: a Mica2 mote with AVR mcu and 802.15.4 radio

- Sleep
 - Majority of the time
 - Telos: 2.4μA
 - MicaZ: 30μA

- Wakeup
 - As quickly as possible to process and return to sleep
 - Telos: 290ns typical, 6μs max
 - MicaZ: 60μs max internal oscillator, 4ms external

- Active
 - Get your work done and get back to sleep
 - Telos: 4-8MHz 16-bit
 - MicaZ: 8MHz 8-bit
CC2420 Radio
IEEE 802.15.4 Compliant

- CC2420
 - Fast data rate, robust signal
 - 250kbps : 2Mchip/s : DSSS
 - 2.4GHz : Offset QPSK : 5MHz
 - 16 channels in 802.15.4
 - -94dBm sensitivity
 - Low Voltage Operation
 - 1.8V minimum supply
 - Software Assistance for Low Power Microcontrollers
 - 128byte TX/RX buffers for full packet support
 - Automatic address decoding and automatic acknowledgements
 - Hardware encryption/authentication
 - Link quality indicator (assist software link estimation)
 - samples error rate of first 8 chips of packet (8 chips/bit)

Hot Chips 2004 : Aug 22-24, 2004
Power Calculation Comparison
Design for low power

- **Mica2 (AVR)**
 - 0.2 ms wakeup
 - 30 μW sleep
 - 33 mW active
 - 21 mW radio
 - 19 kbps
 - 2.5V min
 - 2/3 of AA capacity

- **MicaZ (AVR)**
 - 0.2 ms wakeup
 - 30 μW sleep
 - 33 mW active
 - 45 mW radio
 - 250 kbps
 - 2.5V min
 - 2/3 of AA capacity

- **Telos (TI MSP)**
 - 0.006 ms wakeup
 - 2 μW sleep
 - 3 mW active
 - 45 mW radio
 - 250 kbps
 - 1.8V min
 - 8/8 of AA capacity

Supporting mesh networking with a pair of AA batteries reporting data once every 3 minutes using synchronization (<1% duty cycle)

453 days
328 days
945 days

Hot Chips 2004 : Aug 22-24, 2004
Integrated Antenna
Inverted-F Microstrip Antenna and SMA Connector

- **Inverted-F**
 - Psuedo Omnidirectional
 - 50m range indoors
 - 125m range outdoors
 - Optimum at 2400-2460MHz

- **SMA Connector**
 - Enabled by moving a capacitor
 - > 125m range
 - Optimum at 2430-2483MHz

Hot Chips 2004 : Aug 22-24, 2004
Sensors

- **Integrated Sensors**
 - Sensirion SHT11
 - Humidity (3.5%)
 - Temperature (0.5°C)
 - Digital sensor
 - Hamamatsu S1087
 - Photosynthetically active light
 - Silicon diode
 - Hamamatsu S1337-BQ
 - Total solar light
 - Silicon diode

- **Expansion**
 - 6 ADC channels
 - 4 digital I/O
 - Existing sensor boards
 - Magnetometer
 - Ultrasound
 - Accelerometer
 - 4 PIR sensors
 - Microphone
 - Buzzer

Hot Chips 2004 : Aug 22-24, 2004
Conclusions

- New design approach derived from our experience with resource constrained wireless sensor networks
 - Active mode needs to run quickly to completion
 - Wakeup time is crucial for low power operation
 - Wakeup time and sleep current set the minimal energy consumption for an application
 - Sleep most of the time
- Tradeoffs between complexity/robustness and low power radios
- Careful integration of hardware and peripherals