Introduction to Physical Layer
Physical Layer Outline

- Definitions
- Multiplexing
- Transmission Media
- End System Choices
- Residential Configurations
The time required to transmit a character depends on both the encoding method and the signaling speed (i.e., the modulation rate - the number of times/sec the signal changes its voltage).

- **baud** (D) - the number of changes per second.

- **bandwidth** (H) - the range of frequencies that is passed by a channel. The transmitted signal is constrained by the transmitter and the nature of the transmission medium in cycles/sec (hertz).

- **channel capacity** (C) - the rate at which data can be transmitted over a given channel under given conditions.

 (This is also referred to as data rate (R).)
Modulation Rate

Figure 5.5 A Stream of Binary Ones at 1 Mbps

modulation rate is doubled
signals: electric or electromagnetic encoding of data.

signaling: is the act of propagating the signal along a suitable medium.

Analog signal - a continuously varying electromagnetic wave that may be propagated over a variety of medium depending on the spectrum (e.g., wire, twisted pair, coaxial cable, fiber optic cable and atmosphere or space propagation).
digital signal – a sequence of voltage pulses that may be transmitted over a wire medium.

Note – analog signals to represent analog data and digital signals to represent digital data are not the only possibilities.

There is where modems and codecs come into the picture.
Analog vs Digital (three contexts)

(a) Data and signals

<table>
<thead>
<tr>
<th>Analog data</th>
<th>Digital data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two alternatives: (1) signal occupies the same spectrum as the analog data; (2) analog data are encoded to occupy a different portion of spectrum.</td>
<td>Analog data are encoded using a codec to produce a digital bit stream.</td>
</tr>
<tr>
<td>Digital data are encoded using a modem to produce analog signal.</td>
<td>Two alternatives: (1) signal consists of two voltage levels to represent the two binary values; (2) digital data are encoded to produce a digital signal with desired properties.</td>
</tr>
</tbody>
</table>

(b) Treatment of signals

<table>
<thead>
<tr>
<th>Analog signal</th>
<th>Digital signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is propagated through amplifiers; same treatment whether signal is used to represent analog data or digital data.</td>
<td>Assumes that the analog signal represents digital data. Signal is propagated through repeaters; at each repeater, digital data are recovered from inbound signal and used to generate a new analog outbound signal.</td>
</tr>
<tr>
<td>Not used</td>
<td>Digital signal represents a stream of 1s and 0s, which may represent digital data or may be an encoding of analog data. Signal is propagated through repeaters; at each repeater, stream of 1s and 0s is recovered from inbound signal and used to generate a new digital outbound signal.</td>
</tr>
</tbody>
</table>
Multiplexing {general definition} :: Sharing a resource over time.

(a)

(b)

MUX

Trunk group

Leon-Garcia & Widjaja: Communication Networks
Frequency Division Multiplexing (FDM) vs Time Division Multiplexing (TDM)

Example:
4 users

K & R
Figure 2-31. (a) The original bandwidths. (b) The bandwidths raised in frequency. (c) The multiplexed channel.

Tanenbaum
T1 - TDM Link

TDM: each host gets a **fixed** slot in revolving TDM frame

Figure 2-33. T1 Carrier (1.544Mbps)

Tanenbaum
Concentrator [Statistical Multiplexing]

In statistical multiplexing, the multiplexer visits the incoming channel buffers in some order. The multiplexer empties a buffer before moving to the next one. The buffer contents are tagged to indicate their incoming channel. An idle channel does not waste transmission time.
Packet Switching: Statistical Multiplexing

Sequence of A & B packets does **NOT** have fixed pattern, bandwidth shared on demand \(\Rightarrow \text{statistical multiplexing.} \)
Wavelength Division Multiplexing

Figure 2-32.
Physical Media: Twisted Pair

- **Bit**: propagates between transmitter/receiver pairs.
- **physical link**: what lies between transmitter & receiver.
- **guided media**:
 - signals propagate in solid media: copper, fiber, coax.
- **unguided media**:
 - signals propagate freely, e.g., radio.

Unshielded Twisted Pair (UTP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5:
 100Mbps Ethernet

Category 5e is now standard!!
Grade 1 - Unshielded Untwisted wiring.
Commonly called inside wire by the Telco community.

Grade 2 - Unshielded twisted pair (UTP) derived from IBM Type 3 spec.

Category 3 - Unshielded twisted pair with 100 ohm impedance and electrical characteristics supporting transmission at frequencies up to 16 MHz. May be used with 10Base-T, 100Base-T4, and 100Base-T2 Ethernet. (Obsolete)

Category 4 - Unshielded twisted pair with 100 ohm impedance and electrical characteristics supporting transmission at frequencies up to 20 MHz. May be used with 10Base-T, 100Base-T4, and 100Base-T2 Ethernet. (Obsolete)

Category 5 - Unshielded twisted pair with 100 ohm impedance and electrical characteristics supporting transmission at frequencies up to 100 MHz. May be used with 10Base-T, 100Base-T4, 100Base-T2, and 100Base-TX Ethernet. May support 1000Base-T, but cable should be tested. (Superceded by Cat5e)
"Modern" Twisted Pair

Table 4.2 Twisted Pair Categories and Classes

<table>
<thead>
<tr>
<th></th>
<th>Category 5e Class D</th>
<th>Category 6 Class E</th>
<th>Category 6A Class E<sub>A</sub></th>
<th>Category 7 Class F</th>
<th>Category 7<sub>A</sub> Class F<sub>A</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>100 MHz</td>
<td>250 MHz</td>
<td>500 MHz</td>
<td>600 MHz</td>
<td>1,000 MHz</td>
</tr>
<tr>
<td>Cable Type</td>
<td>UTP</td>
<td>UTP/FTP</td>
<td>UTP/FTP</td>
<td>S/FTP</td>
<td>S/FTP</td>
</tr>
<tr>
<td>Insertion loss (dB)</td>
<td>24</td>
<td>21.3</td>
<td>20.9</td>
<td>20.8</td>
<td>20.3</td>
</tr>
<tr>
<td>NEXT loss (dB)</td>
<td>30.1</td>
<td>39.9</td>
<td>39.9</td>
<td>62.9</td>
<td>65</td>
</tr>
<tr>
<td>ACR (dB)</td>
<td>6.1</td>
<td>18.6</td>
<td>19</td>
<td>42.1</td>
<td>44.1</td>
</tr>
</tbody>
</table>

UTP = Unshielded twisted pair
FTP = Foil twisted pair
S/FTP = Shielded/foil twisted pair
Physical Media: Coaxial Cable and Optical Fiber

Coaxial cable:
- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

Fiber optic cable:
- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - point-to-point transmission (e.g., 10's-100's Gps)
- low error rate: repeaters spaced far apart; immune to electromagnetic noise.
Physical Media: Radio Signals

- signal carried in electromagnetic spectrum.
- no physical "wire"
- bidirectional

propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- **LAN (e.g., Wifi)**
 - 11Mbps, 54 Mbps, 200Mbps
- **wide-area (e.g., cellular)**
 - 4G cellular: ~ 100 Mbps
- **satellite**
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude
Dial-up Modem

- Uses existing telephony infrastructure.
- Home is connected to central office (analog signals).
- up to 56Kbps direct access to router (often less)
- Can’t surf and phone at same time: not “always on”.

![Diagram of dial-up modem setup](image-url)
Digital Subscriber Line (ADSL)

- Uses existing telephone infrastructure.
- up to 1 Mbps upstream (today typically < 256 kbps)
- up to 8 Mbps downstream (today typically < 1 Mbps)
- dedicated physical line to telephone central office

Existing phone line:
- 0-4KHz phone; 4-50KHz upstream data; 50KHz-1MHz downstream data

Asymmetric DSL
Comparison of xDSL Alternatives

<table>
<thead>
<tr>
<th></th>
<th>ADSL</th>
<th>HDSL</th>
<th>SDSL</th>
<th>VDSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate</td>
<td>1.5 to 9 Mbps downstream</td>
<td>1.544 or 2.048 Mbps</td>
<td>1.544 or 2.048 Mbps</td>
<td>13 to 52 Mbps downstream</td>
</tr>
<tr>
<td></td>
<td>16 to 640 kbps upstream</td>
<td></td>
<td></td>
<td>1.5 to 2.3 Mbps upstream</td>
</tr>
<tr>
<td>Mode</td>
<td>Asymmetric</td>
<td>Symmetric</td>
<td>Symmetric</td>
<td>Asymmetric</td>
</tr>
<tr>
<td>Copper pairs</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Range (24-gauge UTP)</td>
<td>3.7 to 5.5 km</td>
<td>3.7 km</td>
<td>3.0 km</td>
<td>1.4 km</td>
</tr>
<tr>
<td>Signaling</td>
<td>Analog</td>
<td>Digital</td>
<td>Digital</td>
<td>Analog</td>
</tr>
<tr>
<td>Line code</td>
<td>CAP/DMT</td>
<td>2B1Q</td>
<td>2B1Q</td>
<td>DMT</td>
</tr>
<tr>
<td>Frequency</td>
<td>1 to 5 MHz</td>
<td>196 kHz</td>
<td>196 kHz</td>
<td>≥ 10 MHz</td>
</tr>
<tr>
<td>Bits/cycle</td>
<td>Varies</td>
<td>4</td>
<td>4</td>
<td>Varies</td>
</tr>
</tbody>
</table>
VDSL

1.4 Km twisted pair limit
Residential Access: Cable Modems

- Does not use telephone infrastructure
 - Instead uses cable TV infrastructure.
- **HFC: hybrid fiber coax**
 - asymmetric: up to 40Mbps downstream, 6 Mbps upstream
- **network** of cable and fiber attaches homes to ISP router:
 - homes *share access* to router
 - unlike DSL, which has *dedicated access.*
Residential Access: Cable Modems

Diagram: http://www.cabledat.comnews.com/cmic/diagram.html
Cable Network Architecture: Overview

Typically 500 to 5,000 homes
Cable Network Architecture: Overview

- Cable Headend
- Cable Distribution Network
- Server(s)
- Home
Cable Network Architecture: Overview

Cable headend

Cable distribution network (simplified)

Home Environment

Set-Top Box

Coax

Splitter

Coax

10 Mbps Ethernet

PC

Cable Modem

TV
Cable Network Architecture: Overview

FDM

channels

V V V V
I I I I
D D D D
E E E E
O O O O
A A A A
C C C C

1 2 3 4 5 6 7 8 9

Cable headend

Cable distribution network

Home
DOCSIS (Data-Over-Cable Service Interface Specification)

Cisco DOCSIS 3.0 Solution

- uBR100012 CMTS
- <15K Subs/Hub
 - RFGW 1 EQAM
 - Up to 48 QAM Channels
- >15K Subs/Hub
 - RFGW 10 EQAM
 - > 480 QAM Channels

DPC3000 DOCSIS 3.0 Cable Modem
(4 channels)

DPC3202 eMTA
(4 channels)

Figure 4. M-CMTS and DOCSIS 3.0 Downstream Channel Bonding
FDM over upstream, downstream frequency channels

- multiple 40Mbps downstream (broadcast) channels (6MHz)
 - single CMTS transmits into channels and received by all modem receivers.
- Multiple 30 Mbps upstream channels (6.4MHz)
- TDM-like upstream mini-slots
Fiber to the Home

- Optical links from central office to the home
- Two competing optical technologies:
 - Passive Optical network (PON)
 - Active Optical Network (AON)
- Higher Internet rates. Fiber also carries television and phone services.
AON Active Optical Network
- Uses electrical powered switches
- More range
- Less reliable

PON Passive Optical Network
- Optical splitters do not need electrical power.
- Hard to isolate failure
- Transmission speed may be slower during peak hours.
Typically used in companies, universities, etc
- 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
- Today, end systems typically connect into Ethernet switch.
Wireless Access Networks

- Shared **wireless** access network connects end system to router
 - via base station aka “access point”.
- **Wireless LANs:**
 - 802.11b/g/n (WiFi): 11, 54, 200 Mbps
- **Wider-area Wireless Access**
 - provided by telco operator
 - ~1Mbps over cellular system (EVDO, HSDPA) 3G and 4G LTE
 - next up (?): WiMAX (10’s Mbps) over wide area
Residential Networks

Typical Residential Network Components:
- DSL or cable modem
- router/firewall/NAT
- Ethernet
- wireless access point (AP)
Physical Layer Summary

- Definitions (analog versus digital)
- Multiplexing (FDM, TDM, statistical)
- Transmission Media (UTP, Coax, Fiber, Radio, Satellite)
- End System Choices (Dial-Up, ADSL, Cable, Ethernet, Wireless AP, Fiber-to-the Home)
- Residential Configurations