Domain Name System (or Service) (DNS)
DNS Outline

- DNS Hierarchial Structure
- Root Name Servers
- Top-Level Domain Servers
- Authoritative Name Servers
- Local Name Server
- Caching and Updating DNS Records
- DNS Protocols and Messages
People: many identifiers:
- SSN, name, passport #

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
- “name”, e.g., www.yahoo.com - used by humans

Q: map between IP addresses and name?

Domain Name System:
- distributed database implemented in hierarchy of many name servers
- application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network’s “edge”
DNS

- DNS servers often run on Unix machines running BIND (Berkeley Internet Name Domain)
- Runs over UDP
- Uses port 53
DNS services

- hostname to IP address translation
- host aliasing
 - Aliases, where canonical name is “real” name
- mail server aliasing
- load distribution
 - replicated Web servers: set of IP addresses for one name

Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

→ doesn’t scale!

- Distributed by design
Three classes of servers (approximation):
- Root DNS servers
- Top-level domain (TLD) servers
- Authoritative name servers

Additionally:
- Local name server
Root DNS Servers

- com DNS servers
 - yahoo.com DNS servers
 - amazon.com DNS servers
- org DNS servers
 - pbs.org DNS servers
- edu DNS servers
 - poly.edu DNS servers
 - umass.edu DNS servers

Example: Client wants IP for www.amazon.com {1st approx:}

- client queries a root server to find .com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com
DNS: Root Name Servers

- Contacted by local name server that can not resolve name
- Root name server:
 - Contacts authoritative name server if name mapping not known
 - Gets mapping
 - Returns mapping to local name server

13 root name servers worldwide (a-m)
Top-Level Domain (TLD)

- Top-level domain (TLD) servers:
 - Responsible for com, org, net, edu, etc, and all top-level country domains such as uk, fr, ca and jp.
 - Network Solutions maintains servers for com TLD.
 - Educause for edu TLD.
 - VeriSign for net TLD.
Authoritative Servers

Authoritative DNS servers:

- Organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web, mail).
- Can be maintained by organization or service provider.
Local Name Server

- Does not strictly belong to hierarchy.
- Each ISP (residential ISP, company, university) has one
 - Also called “default name server”
 - You can run one in your home/dorm!
- When a host makes a DNS query, the query is sent to its local DNS server.
 - ISP provides IP address of local DNS server using DHCP.
 - Acts as proxy, forwards query into the name server hierarchy.
Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Iterated query
• contacted server replies with name of server to contact.
• “I don’t know this name, but ask this server.”
Recursive query

- Puts burden of name resolution on contacted name server.
- Heavy load?

Computer Networks DNS
Once (any) name server learns mapping, it caches mapping.

- Cache entries timeout (disappear) after some time (e.g. two days) \{specified as TTL == Time-To-Live\}.
- IP addresses of TLD servers are typically cached in local name servers.
 - Thus root name servers are not visited frequently.

Originally thought DNS names quite static, but increasingly not so → update/notify mechanisms under design by IETF
DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

- **Type=A**
 - name is hostname
 - value is IP address

- **Type=NS**
 - name is domain (e.g. foo.com)
 - value is hostname of authoritative name server for this domain

- **Type=CNAME**
 - name is alias name for some “canonical” (the real) name
 - value is canonical name
 - www.ibm.com is really servereast.backup2.ibm.com

- **Type=MX**
 - value is name of mailserver associated with name
DNS protocol: query and reply messages, both with the same message format.

msg header
- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

<table>
<thead>
<tr>
<th>identification</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of questions</td>
<td>number of answer RRs</td>
</tr>
<tr>
<td>number of authority RRs</td>
<td>number of additional RRs</td>
</tr>
</tbody>
</table>

questions
(variable number of questions)

answers
(variable number of resource records)

authority
(variable number of resource records)

additional information
(variable number of resource records)
DNS Protocol and Messages

Resources records in response to query

- Name, type fields for a query
- Records for authoritative servers
- Additional "helpful" info that may be used

<table>
<thead>
<tr>
<th>Field</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>identification</td>
<td>12 bytes</td>
</tr>
<tr>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>number of questions</td>
<td></td>
</tr>
<tr>
<td>number of answer RRs</td>
<td></td>
</tr>
<tr>
<td>number of authority RRs</td>
<td></td>
</tr>
<tr>
<td>number of additional RRs</td>
<td></td>
</tr>
<tr>
<td>questions</td>
<td>(variable number of questions)</td>
</tr>
<tr>
<td>answers</td>
<td>(variable number of resource records)</td>
</tr>
<tr>
<td>authority</td>
<td>(variable number of resource records)</td>
</tr>
<tr>
<td>additional information</td>
<td>(variable number of resource records)</td>
</tr>
</tbody>
</table>
Example: new startup “Network Utopia”
- How do people get IP address of your Web site?
- How do they send you email?

Register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
- provide names, IP addresses of authoritative name server (primary and secondary).
- registrar inserts two RRs into .com TLD server:

(networkuptopia.com, dns1.networkuptopia.com, NS)
(dns1.networkuptopia.com, 212.212.212.1, A)

Create authoritative server Type A record for www.networkuptopia.com; Type MX record for networkuptopia.com for mail.
DNS Summary

- DNS Hierarchical Structure
- Root Name Servers
- Top-Level Domain Servers
- Authoritative Name Servers
- Local Name Server
- Caching and Updating DNS Records
- DNS Protocols and Messages