Final Review

IX. DNS
 A. Services provided
 B. Hierarchy
 a. Root Name servers
 b. TLD servers
 c. Authoritative DNS servers
 d. Local DNS servers
 C. Iterative vs Recursive Queries
 D. RR format

Mid Term covered up to here ----------

X. Introduction to Security
 A. Malware definitions
 1. Spyware, botnet, virus, worm, Trojan horse
 B. Denial of Service (DoS) and Distributed DOS (DDoS) attacks
 1. Using packet sniffing
 a. Masquerading attacks
 b. Man-in-the-Middle Attacks

XI. Transport Layer (front part)
 A. TCP vs UDP
 1. TCP demultiplexing (only)
 B. UDP
 1. Some details (e.g., UDP header)
 2. Checksum

XII. Reliable Data Transfer Protocols {Treatment is TCP(end-to-end) and data link layer concurrently}
 A. Framing at DL Layer
 B. Tanenbaum’s Data Link Layer protocols
 1. Modeling Assumptions
 a. ARQ
 2. Utopia
 3. Stop-and-Wait {introduce ACKs}
 4. PAR {noisy channel}
 a. old version
 1. ACK, timer, duplicate frames
 b. "new version" {ACKs, timers, premature timeouts}
 5. Sliding Window Protocols
 a. piggybacking ACKs
 b. 1-bit sliding window (protocol 4)
 c. Go Back N (protocol 5)
 i. cumulative ACKs
 d. Selective Repeat (protocol 6)
 e. NAKs, ACKtimer

XIII. Transport Layer (middle)
A. Pipelining and Window Buffers
 1. max window size relative to sequence number range
B. TCP Flow Control
 1. advertised window (rwnd)

XIV. TCP Congestion Control (Transport Layer – back)
A. Causes and Effects of Congestion
 1. Two of K&R scenarios discussed
B. General Approaches to Congestion Control
 1. network-assisted with explicit indicators (e.g. ECN)
 2. end-to-end (e.g., TCP congestion control)
C. AIMD
 1. cwnd – congestion window
 2. linear increase (AI) – congestion avoidance approach
D. TCP Tahoe
 1. Slow Start
 a. ssthresh
 2. Fast Retransmit
E. TCP Reno
 1. Fast Recovery
F. TCP New Reno
G. Other TCP ‘flavors’: SACK, Cubic and Compound!
H. TCP three-way handshake
I. RIO and RTO

XV. Network Layer (part 1)
A. Forwarding versus Routing (Lookup Tables)
B. Routing Overview/Categorization
 1. Non-Adaptive
 a. flooding, shortest path
 2. Adaptive
 a. isolated and centralized
 b. link metrics (hops, delay, inverse of capacity)
C. Distributed Routing
 1. IGP versus EGP
D. Distance Vector Routing
 1. Bellman-Ford algorithm
 2. DV packets
 3. neighbors
 4. bad news slowly, good news quickly
 5. RIP (covered later)

XV. Network Layer (part 2)
A. IP Issues
 1. fragmentation/reassembly and IP header
 2. subnets, subnet masks, CIDR
B. DHCP
 1. dynamic addressing protocol over UDP
C. NAT
 1. Motivation – problems addressed
 2. Operation
D. Link State Routing
 1. Dijkstra’s Algorithm (not covered)
 2. Reliable Flooding
 3. LSP details
E. Hierarchical Routing using AS’s
 1. Intra-routing – OSPF
 a. multiple router types and LSA’s
F. Inter-routing – BGP
 1. reachability
XVI. Introduction to LANs, Ethernet and ARP
A. IEEE802
B. CSMA
C. CSMA-CD
D. Ethernet definition
 1. 1-persistent CSMA
 2. BEB – Binary Exponential Backoff
E. ARP
 1. mapping Ethernet addresses to IP addresses
F. Hubs versus Switches
G. Taking turns
 1. polling
 2. token ring
XVII. Wireless
A. RFID
B. WiFi - IEEE802.11a,b,g,n,ac