Domain Name System (or Service) (DNS)

DNS Outline

- . Infrastructure Services
- DNS Hierarchical Structure
- Root Name Servers
- . Top-Level Domain Servers
- Authoritative Name Servers
- Local Name Server
- Caching and Updating DNS Records
- DNS Protocols and Messages

Infrastructure Services

- There are protocols *essential* for the Internet to run smoothly that do not fit neatly into the strictly layered model.
- Two of these infrastructure services, a name service and network management are provided by DNS and SNMP (Simple Network Management Protocol) respectively.
- name server :: an implementation of a resolution mechanism available on a network and queried via a message.

Name Service Terminology

name space :: defines the set of possible names.

- A name space can be either flat (names are not divisible into components), or it can be hierarchical (Unix file names are an obvious example).
- naming system :: maintains a collection of bindings of names to values.
 - The value can be anything we want the naming system to return when presented with a name; in many cases it is an address.

resolution mechanism :: a procedure that returns the corresponding value when invoked with a name.

Name Service email Example

Name Service (DNS)

Figure 9.14 Names translated into addresses, where the numbers 1–5 show the sequence of steps in the process.

DNS: Domain Name System

People: many identifiers:

– SSN, name, passport #

Internet hosts, routers:

- IPv4 address (32 bit) used for addressing datagrams.
- "name", e.g.,
 www.cnn.com used by humans.
- Q: map between IP addresses and name?

Domain Name System::

1. distributed database implemented in hierarchy of many DNS name servers.

2. application-layer protocol that enables hosts, routers, name servers to communicate to resolve names (address/name translation).

- note: This core Internet function, implemented as application-layer protocol.
- complexity is at network's "edge".

DNS Details

- DNS servers often run on Unix machines running BIND (Berkeley Internet Name Domain software).
- DNS runs over UDP.
- Uses port 53.
- DNS is commonly employed by other application layer protocols (HTTP, SMTP and FTP) to determine IP addresses.

DNS Design

DNS provides four services:

- 1. hostname to IP address translation
- 2. host aliasing
 - Aliases, where canonical name is "real" name
- 3. mail server aliasing
- 4. load distribution
 - replicated Web servers: set of IP addresses for one host name.

Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- Maintenance
- → doesn't scale!
 DNS is distributed by design!

Distributed Domain Hierarchy

- DNS implements a hierarchical name space for Internet objects.
 - Unlike Unix file names, DNS names are processed from right to left and use periods as the separator.
 - Like Unix files, the DNS hierarchy is a tree abstraction (i.e., each node in the tree corresponds to a domain and the leaves correspond to the hosts being named).

DNS Server Classes

- Three classes of servers (approximation):
 - Root DNS servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Additionally, the resolution includes
 - Local name servers

Distributed, Hierarchical Database

Example: Client wants IP for www.amazon.com {1st approx}

- client queries a root server to find .com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

Name Servers

- Partition hierarchy into zones

- Each zone implemented by two or more *name servers*.
- Each zone corresponds to some administrative authority that is responsible for that portion of the hierarchy.

DNS: Root Name Servers

- . Contacted by local name server that can not resolve name
- Root name server:
 - Contacts authoritative name server if name mapping not known.
 - Gets mapping.

Returns mapping to local name server.

Top-Level Domain (TLD)

- . Top-level domain (TLD) servers:
 - Responsible for com, org, net, edu, etc, and all top-level country domains such as uk, fr, ca and jp.
 - Verisign Global Registry Services maintains servers for com and net TLD.
 - Educause for edu TLD.

Authoritative Servers

Authoritative DNS servers:

- Organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers (e.g., Web, mail).
- -Can be maintained by organization or service provider.

Local Name Server

- Does not strictly belong to hierarchy.
- Each ISP (residential ISP, company, university) has one
 - Also called "default name server".
 - You can run one in your home/dorm!
- When a host makes a DNS query, the query is sent to its local DNS server.
 - ISP provides IP address of local DNS server using DHCP.
 - Acts as proxy, forwards query into the name server hierarchy.

DNS Name Resolution Example

 Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Iterated query

- contacted server replies with name of server to contact.
- "I don't know this name, but ask this server."

Name Resolution Example

Figure 9.18 Name resolution in practice, where the numbers 1–10 show the sequence of steps in the process.

DNS Name Resolution (example)

Computer Networks DNS

DNS: Caching and Updating Records

- Each name server implements the zone information as a collection of *resource records*.
- Once (any) name server learns mapping, it caches mapping.
 - Cache entries timeout (disappear) after some time (e.g two days) {specified as TTL ==Time-To-Live}.
 - IP addresses of TLD servers are typically cached in local name servers.
 - Thus root name servers are not visited frequently.
- Originally thought DNS names quite static, but increasingly not so → update/notify mechanisms under design by IETF.

– RFC 2136: <u>http://www.ietf.org/rfc/rfc2136.txt</u>

DNS Resource Records

<u>DNS</u>: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
 - > name is hostname
 - value is IP address
- Type=NS
 - name is domain (e.g. foo.com)
 - value is hostname of authoritative name server for this domain

• Type=CNAME

- name is alias name for some "canonical" (the real) name www.ibm.com is really servereast.backup2.ibm.com
- > value is canonical name
- Type=MX
 - value is name of mailserver associated with name

WPI

DNS Protocol and Messages

<u>DNS protocol:</u> *query* and *reply* messages, both with the same *message format*.

msg header

identification: 16 bit # for query, reply to query uses same #

🗖 flags:

- * query or reply
- * recursion desired
- * recursion available
- * reply is authoritative

DNS Protocol and Messages

Inserting records into DNS

- Example: new startup "Network Utopia"
 - How do people get IP address of your Web site?
 - How do they send you email?
- 1. Register domain name networkutopia.com at DNS registrar (e.g., Verisign)
 - provide names, IP addresses of authoritative name server (primary and secondary).
 - registrar inserts two RRs per server into .com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

2. Create Type A record www.networkuptopia.com for web server and Type MX record for <u>mail.networkutopia.com</u> for mail server in authoritative DNS server.

DNS Summary

- **DNS Hierarchial Structure**
- **.** Root Name Servers
- Top-Level Domain Servers
- Authoritative Name Servers
- Local Name Server
- Caching and Updating DNS Records
- DNS Protocols and Messages

