Reliable and Real-Time Communication in Industrial Wireless Mesh Networks

Authors: Song Han, Xiuming Zhu, Aloysius K. Mok, Deji Chen, and Mark Nixon

Presenter: Alexander W. Witt

Presentation Outline

1. Background

- 2. The WirelessHART Network Architecture
- 3. Basic Node Types
- 4. Routing Schemes
- 5. Routing Graphs
- 6. Constructing a Reliable Broadcast Graph
- 7. Constructing a Reliable Uplink Graph
- 8. Constructing a Reliable Downlink Graph
- 9. Problem for Reliable Downlink Graphs
- 10. The SRDR Algorithm
- 11. Communication Scheduling Constraints
- 12. Scheduling
- 13. Experiment Assumptions
- 14. Performance Evaluation

Background

- Industrial automation
- Wireless process control
- ISA, HART, and ZigBee
- Reliable communication
- Real-time communication
- Network management techniques

The WirelessHART Network Architecture

- The architecture is centralized and focuses on the Network Manager
- The Network manager is in control of scheduling and configuring the routing in the network
- The Network manager receives process data from each of the WirelessHART nodes in the network
- Reliability is the key part of the architecture that needs to be guaranteed as well as efficiency

OSI Layer	НА	RT
Application	Command Oriented. Pred Application F	lefined Data Types and Procedures
Presentation		
Session		
Transport	Auto-Segmented transfer of large data sets, reliable stream transport, Negotiated Segment sizes	
Network		Power-Optimized Redundant Path, Mesh to the edge Network
Data Link	A Binary, Byte Oriented, Token Passing, Master/Slave Protocol	Secure, Time Synched TDMA/ CSMA, Frequency Agile with ARQ
Physical	Simultaneous Analog & Digital Signaling 4-20mA Copper Wiring	2.4 GHz Wireless, 802.15.4 based radios, 10dBm Tx Power
	Wired FSK/PSK & RS 485	Wireless 2.4 GHz

Basic Node Types

- Network Manager: Configures the network, scheduling, and manages communication among WirelessHART devices
- Gateway: Connects host applications to field devices
- Access Point: Attached to the gateway and provides redundant paths between wireless network and the gateway
- Router: Deployed to improve coverage and connectivity
- Field Device: Collects data from a process plant
- Handheld: A portable wirelessHART computer

Routing Schemes

- Source routing: all routing decisions made at the source node. This approach does not scale for large industrial networks and leads to large configuration overhead
- **Graph routing:** routing decisions made based on neighbors of the node that the message is currently visiting.

Routing Graphs

- There are a total of 3 types of routing graphs relevant to the WirelessHart Architecture
- Broadcast routing graph
- Uplink routing graph
- Downlink routing graph

Constructing a Reliable Broadcast Graph

- A node is reliable iff $\delta_i \ge 2$
- $S_B = \{i \mid \delta_i \ge 2, i \in V\}$
- Maximize $|S_B|$ to get G_B
- Avg. hops from gateway is h_i
- Maintain V_B of explored nodes
- V_B contains $\{g\} \cup V_{AP}$
- Maintain E_B of explored edges
- Select one node v from V V_B
- Find S' reliable nodes in V V_B
- Choose v from S' with minimal average hops
- Add v to V_B
- If no reliable nodes search for S" one incoming from V_B
- Worse case algorithm complexity $O(|V|^3)$

Alg 1 Constructing Reliable Broadcast Graph $G_B(V_B, E_B)$		
1: // $G(V, E)$ is the original graph		
2: Initially $V_B = g \cup V_{AP}$ and E_B contains all links from g to V_{AP} .		
3:		
4: while $V_B \neq V$ do		
5: Find $S' \subseteq V - V_B$: $\forall v \in S'$, v has at least two edges from V_B		
6: if $S' \neq \emptyset$ then		
7: for all node $v \in S'$ do		
8: Sort its edges $e_{u,v}$ from V_B according to h_u		
9: Choose the first two edges $e_{u_1,v}$ and $e_{u_2,v}$		
10: $\bar{h}_v = \frac{h_{u_1} + h_{u_2}}{2} + 1$		
11: end for		
12: Choose the node v with min \bar{h}_v		
13: Add v to V_B and add $e_{u_1,v}$ and $e_{u_2,v}$ to E_B		
14: else		
15: Find $S'' \subseteq V - V_B$: $\forall v \in S''$, v has one edge $e_{u,v}$ from V_B		
16: if $S'' \neq \emptyset$ then		
17: for all node $v \in S''$ do		
$18: h_v = h_u + 1$		
19: Calculate n_v , the # of its outgoing edges to $V - V_B$		
20: end for		
21: Choose the node v with maximum n_v , break the using h_v		
22: end if		
23: else		
24: return FAIL;		
25: end if		
20: end white 27: noture SUCCESS:		
27: return SUCCESS;		

Constructing a Reliable Uplink Graph

- The direction of information flow is reversed in the uplink scenario
- Devices send information to the gateway in the network graph
- All nodes are essentially broadcasting to the gateway
- All nodes should be apart of the uplink graph, otherwise an error has occurred
- Worse case algorithm complexity O(|V|³). This is bounded by the time needed to produce the broadcast graph

Alg 2 Constructing Reliable Uplink Graph $G_U(V_U, E_U)$ 1: // G(V, E) is the original graph, $G^{R}(V, E^{R})$ is the reversed graph 2: Construct $G^{R}(V, E^{R})$ 3: Construct $G_B(V_B, E_B)$ from $G^R(V, E^R)$ by applying Alg. 1 4: 5: if $V_B = V$ then // Construct G_U by reversing all edges in G_B 6: $G_U(V_U, E_U) = G_R^R(V_B, E_R^R)$ 7: 8: else // the network topology is disconnected 9: return FAIL: 10: 11: end if 12: return SUCCESS;

Constructing a Reliable Downlink Graph

- WirelessHART standard algorithm
- Only involves part of the nodes in the full network graph, G(V, E)
- Exactly one cycle in the downlink graph of length 2 between the two parents of the node for which the graph is being constructed
- Maximize # of nodes in the downlink graph
- Minimize the graph's average number of hops from the gateway
- Maintain *S*, set of nodes whose reliable downlink graphs have already been constructed

```
C1: v has at least two parents u_1 and u_2 in S
  C2: u_1 and u_2 form a directed cycle
  C3: u_2(u_1) has at least one parent from the cycle in G_{u_1}(G_{u_2})
Alg 3 Constructing Reliable Downlink Graphs in G(V, E)
 1: Let S be the set of nodes with downlink graphs constructed
 2: Initially S = g \cup V_{AP} and G_g = (\{g\}, \emptyset)
 3: Initially for each AP i in S, set G_i = (\{g \cup i\}, \{e_{g_i}\})
 4:
 5: while S \neq V do
 6:
      Find S' \subseteq V - S: \forall v \in S', v has at least two edges from S
       // S_r is the reliable node set in S', initially S_r = \emptyset
 7:
 8:
       if S' \neq \emptyset then
 9:
           for all node v \in S' do
              for all edge pair (e_{u_1,v}, e_{u_2,v}) from S do
if C 1 \wedge C 2 \wedge C 3 then
10:
11:
12:
                     S_r = S_r \cup \{v\}
13:
                  end if
14:
                  \bar{h}_{u_1,u_2} = (\bar{h}_{u_1} + \bar{h}_{u_2})/2
15:
               end for
16:
              Choose the edge pair (e_{u_1,v}, e_{u_2,v}) with min \bar{h}_{u_1,u_2}
17:
              \bar{h}_{v} = \bar{h}_{u_{1},u_{2}} + 1
18:
            end for
19:
           if S_r \neq \emptyset then
              Add node v in S_r with min \bar{h}_v to S
20:
21:
           else
22:
              Add node v in S' with min \bar{h}_v to S
23:
           end if
24:
           // construct G_{v}: \bar{h}_{u_{1},u_{2}} is the min among all edge pairs to v
25:
           ConstructDG(G, G_{u_1}, G_{u_2}, v);
26:
        else
27:
           Find S'' \subseteq V - S: \forall v \in S'', v has one edge e_{u,v} from S
28:
           if S'' \neq \emptyset then
29:
              for all node v \in S'' do
30:
                  \bar{h}_v = \bar{h}_u + 1
31:
                  Calculate n_v, the # of v's outgoing edges to V - S
32:
               end for
33:
              Add v to S with maximum n_v, break tie using \bar{h}_v
34:
              ConstructDG(G, G_{u_1}, null, v);
35:
           else
36:
              return FAIL;
37:
           end if
38:
       end if
39: end while
40: return SUCCESS;
```

Difficulty in Producing Completely Reliable Graphs

Problem for Reliable Downlink Graphs

- The previous approach is not scalable because it introduces high configuration overhead
- Traversing a sequence of local known graphs seems more logical
- Sequential-Reliable-Downlink-Routing (SRDR)
- Each node maintains a small local graph to maintain reliable routing from its parents
- Downlink graph can be constructed by assembling intermediate local graphs based on a given order
- This allows existing device configurations to be reused

The SRDR Algorithm

- Reserved bits 3-4 of the control byte in the network layer header indicate the presence of SRDR routing fields
- Source routing option field stores the ordered local graph list
- Routing module modified to support SRDR
- SRDR-opt allows nodes along the path to select shortcuts if available and replace graph ID information

```
Alg 5 Constructing Sequential Reliable Downlink Routes
 1: Let S be the set of explored nodes with downlink route constructed
 2: Initially S = g \cup V_{AP}
 3: Initially for each AP i in S, set G_i = (\{g \cup i\}, \{e_{g,i}\}) and R_i = G_i
 4:
 5: while S \neq V do
        Find S' \subseteq V - S: \forall v \in S', v has at least two edges from S
        // S<sub>r</sub> is the reliable node set in S', initially S_r = \emptyset
 7:
        if S' \neq \emptyset then
 8:
 9:
           for all node v \in S' do
               for all edge pair (e_{u_1,v}, e_{u_2,v}) from S do
10:
11:
                  h_{u_1,u_2} = (h_{u_1} + h_{u_2})/2
12:
               end for
               Find P_v, set of edge pairs of v satisfying C1 \wedge (C2 \cup C3)
13:
14:
               if P_v \neq \emptyset then
15:
                  S_r = S_r \cup \{v\}
16:
                  Choose (e_{u_1,v}, e_{u_2,v}) from P_v with min \bar{h}_{u_1,u_2}
17:
               else
18:
                  Choose (e_{u_1,v}, e_{u_2,v}) from S with min \bar{h}_{u_1,u_2}
19:
               end if
20:
               \bar{h}_{v} = \bar{h}_{u_{1},u_{2}} + 1
21:
           end for
22:
           if S_r \neq \emptyset then
23:
               Add v in S_r with min \bar{h}_v to S
24:
           else
              Add v in S' with min \bar{h}_v to S
25:
26:
           end if
27:
           ConstructDG(G, u_1, u_2, v);
28:
        else
29:
           Find S'' \subseteq V - S and \forall v \in S'', v has one edge e_{u,v} from S
30:
           if S'' \neq \emptyset then
               for all node v \in S'' do
31:
32:
                  \bar{h}_v = \bar{h}_u + 1
33:
               end for
34:
               Add v to S with min \bar{h}_{v}
35:
               G_{v} = (\{u \cup v\}, \{e_{u,v}\})
36:
               R_v = R_u \rightarrow G_v
37:
           else
38:
              return FAIL;
39:
           end if
40:
       end if
41: end while
42: return SUCCESS;
```

Communication Schedule Constraints

- The maximum number of concurrent active channels is 16
- Each device can only be scheduled to TX/RX once in a slot
- Multiple devices can compete to transmit to the same device simultaneously (in shared timeslot)
- On a multi-hop path, early hops must be scheduled first
- The practical sample rates are defined from 250 ms to 32 s
- Timeslot duration is 10 ms

Scheduling

- Use the concept of a super frame to group a sequence of consecutive timeslots
- Data superframes: Used to support data transmissions
- Management superframes: Used to support exchanging network management messages
- The # of data superframes is determined by the number of different sampling rates in the network
- Global matrix for timeslots and channels
- Timeslots in the matrix can be unused, exclusive, shared, or reserved
- Schedules are distributed to devices in the network
- Management schedule construction follows the same approach

_			
A	Alg 7 Constructing Data Communication Schedule		
	1: Sort device sample rates in ascending order: $r_1 < r_2 < \ldots < r_k$.		
	2: Identify the set of nodes with each sample rate: N_1, N_2, \ldots, N_k .		
	3: Initialize the schedule for each node as \emptyset		
	4:		
	5: for all r_i from r_1 to r_k do		
	6: Generate the data superframe \mathcal{F}_i		
	7: for all node $v \in N_i$ do		
	8: // Schedule primary and retry links for publishing data		
	9: ScheduleLinks($v, g, G_U, \mathcal{F}_i, 0$, Exclusive);		
1	0: ScheduleLinks($v, g, G_U, \mathcal{F}_i, \frac{l_i}{4}$, Shared);		
1	1:		
1	2: // Schedule primary and retry links for control data		
1	3: ScheduleLinks(g, v, G_v , \mathcal{F}_i , $\frac{l_i}{2}$, Exclusive);		
1	4: ScheduleLinks $(g, v, G_v, \mathcal{F}_i, \frac{3l_i}{4}, \text{Shared});$		
1	5:		
1	6: if all link assignments are successfully then		
1	7: continue;		
1	8: else		
1	9: // Defer bandwidth request from node v		
2	0: return FAIL;		
2	1: end if		
2	2: end for		
2	3: end for		
2	24. return SUCCESS		

Experiment Assumptions

- Open field, line-of-sight experimental scenarios
- The simulation area is fixed at 450 m x 450 m
- Default device communication distance is 100 m
- No edge between a pair of nodes if they are not in each other's communication range

Fig. 12. Architecture of the complete WirelessHART communication system

Configuration Overhead

Reachability

Recovery Overhead for Connectivity

Recovery Overhead for Reliability Properties

Reachability in Downlink Graph

Average Number of Nodes Per Downlink Graph

Average Number of Edges Per Downlink Graph

Average Downlink Latency vs. Network Size

Average Downlink Latency vs. Communication Range

Scheduling Success Ratio vs. Sampling Rate

Network Utilization vs. Sampling Rate

Critique

- A well-organized paper describing WirelessHART networks
- Experimentation is done in real-world simulated settings that may not necessarily describe everything that occurs in the industrial setting

Questions ?

Sources Cited

 Song Han; Xiuming Zhu; Mok, A.K.; Deji Chen; Nixon, M., "Reliable and Real-Time Communication in Industrial Wireless Mesh Networks," in *Real-Time and Embedded Technology and Applications Symposium* (*RTAS*), 2011 17th IEEE, vol., no., pp.3-12, 11-14 April 2011. doi: 10.1109/RTAS.2011.9