
IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013 3711

Lithe: Lightweight Secure CoAP for the
Internet of Things

Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt

Abstract— The Internet of Things (IoT) enables a wide range
of application scenarios with potentially critical actuating and
sensing tasks, e.g., in the e-health domain. For communication at
the application layer, resource-constrained devices are expected
to employ the constrained application protocol (CoAP) that is
currently being standardized at the Internet Engineering Task
Force. To protect the transmission of sensitive information, secure
CoAP mandates the use of datagram transport layer security
(DTLS) as the underlying security protocol for authenticated
and confidential communication. DTLS, however, was originally
designed for comparably powerful devices that are interconnected
via reliable, high-bandwidth links. In this paper, we present
Lithe—an integration of DTLS and CoAP for the IoT. With
Lithe, we additionally propose a novel DTLS header compression
scheme that aims to significantly reduce the energy consumption
by leveraging the 6LoWPAN standard. Most importantly, our
proposed DTLS header compression scheme does not compromise
the end-to-end security properties provided by DTLS. Simul-
taneously, it considerably reduces the number of transmitted
bytes while maintaining DTLS standard compliance. We evaluate
our approach based on a DTLS implementation for the Contiki
operating system. Our evaluation results show significant gains in
terms of packet size, energy consumption, processing time, and
network-wide response times when compressed DTLS is enabled.

Index Terms— CoAP, DTLS, CoAPs, 6LoWPAN, security, IoT.

I. INTRODUCTION

IPV6 over Low power Wireless Personal Area Network
(6LoWPAN) [1] enables the use of IP in low-power

and lossy wireless networks such as Wireless Sensor Net-
works (WSNs). Such IP-connected smart devices (Things)
are becoming part of the Internet hence forming the Internet
of Things (IoT) or strictly speaking the IP-connected IoT.

Manuscript received May 24, 2013; revised July 3, 2013 and July 25, 2013;
accepted July 31, 2013. Date of publication August 7, 2013; date of current
version August 28, 2013. This work was supported by the SICS Center for
Networked Systems (CNS), SSF through the Promos project, and CALIPSO,
Connect All IP-Based Smart Objects, funded by the European Commission
under FP7 under Contract FP7-ICT-2011.1.3-288879. The associate editor
coordinating the review of this paper and approving it for publication was
Dr. Chonggang Wang.

S. Raza is with SICS Swedish ICT, Kista SE-164 29, Sweden (e-mail:
shahid@sics.se).

H. Shafagh is with SICS Swedish ICT, Kista SE-164 29, Sweden, and also
with Communication and Distributed Systems, RWTH Aachen University,
Aachen 52062, Germany (e-mail: hossein@sics.se).

K. Hewage is with the Department of Information Technology, Uppsala
University, Uppsala 751 05, Sweden (e-mail: kasun.hewage@it.uu.se).

R. Hummen is with Communication and Distributed Systems, RWTH
Aachen University, Aachen 52062, Germany (e-mail: hummen@comsys.
rwth-aachen.de).

T. Voigt is with SICS Swedish ICT, Kista SE-164 29, Sweden, and also
with the Department of Information Technology, Uppsala University, Uppsala
751 05, Sweden (e-mail: thiemo@sics.se).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSEN.2013.2277656

TCP performance is known to be inefficient in wireless
networks, due to its congestion control algorithm, and the
situation is exacerbated with the low-power radios and lossy
links found in sensor networks. Therefore, the connection-
less UDP is mostly used in the IoT. Further, HTTP, which
is primarily designed to run over TCP, is inefficient in lossy
and constrained environments. The IETF is working on the
connection-less lightweight Constrained Application Protocol
(CoAP) [2], a new proposed standard for the IoT. CoAP is
designed to meet specific requirements such as simplicity,
low overhead, and multicast support in resource-constrained
environments. Security is particularly important for the Things
as they are connected to the untrusted Internet. For instance,
medical monitoring denotes a typical security-sensitive appli-
cation scenario. Here, a smart device, such as an insulin,1 may
be attached to the patient’s body and periodically report the
condition of the patient to a back-end service in the Internet.
In emergency cases, a physician may additionally be able to
trigger instant injection of medication into the patient’s body.

CoAP proposes to use Datagram Transport Layer Secu-
rity (DTLS) [2] as the security protocol for automatic key
management and for data encryption and integrity protection,
as well as for authentication. CoAP with DTLS support is
termed secure CoAP (CoAPs). DTLS is a chatty protocol and
requires numerous message exchanges to establish a secure
session. While DTLS supports a wide range of cryptographic
primitives for peer authentication and payload protection, it
was originally designed for network scenarios where message
length was not a critical design criterion. Therefore, it is
inefficient to use the DTLS protocol, as it is, for constrained
IoT devices. To cope with constrained resources and the
size limitations of IEEE 802.15.4-based networks,2 6LoWPAN
header compression mechanisms are defined. The 6LoWPAN
standard already defines the header compression format for
the IP header, IP extension headers, and the UDP header. We
believe it is particularly beneficial to apply the 6LoWPAN
header compression mechanisms to compress other protocols
having well-defined header fields, such as DTLS.

In this paper we provide a lightweight CoAPs by compress-
ing the underneath DTLS protocol [3] with 6LoWPAN header
compression mechanisms. We name our lightweight 6LoW-
PAN compressed CoAPs Lithe. The purpose of DTLS header
compression is twofold. First, achieving energy efficiency
by reducing the message size, since communication requires

1Medtronic probes insulin pump risks, Reuters, October 2011.
2The Maximum Transmission Unit (MTU) size of the IEEE 802.15.4

protocol is 127 bytes.

1530-437X © 2013 IEEE

3712 IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013

Fig. 1. An IoT setup that uses CoAPs to secure communication between sensor nodes in 6LoWPANs and hosts in the Internet.

more energy than computation. Second, avoiding 6LoWPAN
fragmentation that is applied when the size of a datagram
is larger than the link layer MTU. Avoiding fragmentation,
whenever possible, is also important from the security point of
view as the 6LoWPAN protocol is vulnerable to fragmentation
attacks [4]. Our compressed DTLS maintains true End-to-End
(E2E) security between Lithe enabled hosts in 6LoWPAN
networks and typical Internet hosts that use uncompressed
CoAPs. Figure 1 shows a typical IoT setup, where a 6LoW-
PAN network consisting of CoAPs enabled nodes is connected
through a 6LoWPAN Border Router (6BR) with the Internet.

To the best of our knowledge we are the first to propose
6LoWPAN compressed DTLS and enable lightweight CoAPs
support for the IoT. We implement our DTLS header compres-
sion mechanisms in the Contiki OS [5]. The main contributions
of this paper are:

• We provide novel and standard compliant DTLS compres-
sion mechanisms that aim to increase the applicability of
DTLS and, thus, CoAPs for constrained devices.

• We implement the compressed DTLS in an OS for
the IoT and evaluate it on real hardware; the results
quantitatively show that Lithe is in many aspects more
efficient compared to uncompressed CoAP/DTLS.

The rest of the paper is organized as follows. We first
summarize related work in Section II. We give a brief
overview of the technologies used in this paper in Section III.
In Section IV, we introduce our DTLS header compression
mechanisms. Our implementation is outlined in Section V.
In Section VI, we describe our network setup and discuss the
evaluation results. Finally, Section VII concludes this paper.

II. RELATED WORK

Providing E2E security is a widely explored area in con-
ventional Internet communication. However, there has been
comparatively less research conducted in E2E security con-
sidering 6LoWPANs. The resource constraints of the devices
and the lossy nature of wireless links are among the major
reasons that hinder applying general E2E security mechanisms
to 6LoWPANs. Recently, the community has presented works
on analyzing security challenges in the IP-based IoT [6] and
solutions that improve or modify standard IP security protocols
for the requirements of resource-constrained devices. In our
discussion of related work, we focus on approaches that aim
to enable E2E security solutions in the IoT.

In our previous work [7], we propose a header compression
method to use IPsec to secure the communication between
nodes in 6LoWPAN networks and hosts in the Internet.
We define Next Header Compression (NHC) encodings to
compress the Authentication Header (AH) and Encapsulating
Security Payload (ESP) extension headers. Jorge et al. [8]
extend our solution and include IPsec in tunnel mode. They
implement and evaluate their proposal in TinyOS. IPsec secu-
rity services are shared among all applications running on a
particular machine. Even though our 6LoWPAN compressed
IPsec can be used to provide lightweight E2E security at the
network layer, it is not primarily designed for web protocols
such as HTTP or CoAP. For web protocols TLS or DTLS are
common security solutions. TLS works over TCP, whereas in
6LoWPAN networks UDP is preferred.

Brachmann et al. [9] propose TLS-DTLS mapping to
secure the IoT. However, this requires the presence of a
trusted 6BR and E2E security breaks at the 6BR. Kothmayr
et al. [10] investigate the use of DTLS in 6LoWPANs with a
Trusted Platform Module (TPM) to get hardware support for
the RSA algorithm. However, they have used DTLS as it is
without using any compression method which would shorten
the lifetime of the entire network due to the redundant bits
in DTLS messages. Granjal et al. [11] evaluate the use of
DTLS as it is with CoAP for secure communication. They
note that payload space scarcity would be problematic with
applications that require larger payloads. As an alternative,
they suggest to employ security at other layers such as
compressed form of IPsec. In a recent work, Keoh et al. [12]
have discussed the implications of securing the IP-connected
IoT with DTLS and propose an architecture for secure network
access and management of unicast and multicast keys with
extended DTLS.

The above solutions either assess the use of TLS or DTLS
in the IoT or present architectures that break E2E security.
In this paper, we reduce the overhead of DTLS for the IoT
by employing 6LoWPAN header compression mechanisms. In
another work [13], we propose design ideas to reduce the
energy consumption of the two-way certificate-based DTLS
handshake. We suggest (i) pre-validation of certificates at
the trusted 6BR, (ii) session resumption to avoid full re-
handshake, and (iii) handshake delegation to the owner of the
resource-constrained device. That work in making certificate-
based authentication viable for the IoT is complementary to

RAZA et al.: LIGHTWEIGHT SECURE CoAP FOR THE IoT 3713

this one. We plan to combine DTLS header compression with
those ideas to make the mutual certificate-based handshake
more efficient. Recently, Generic Header Compression (GHC)
[14], analogous to NHC, is also defined to allow upper layer
(UDP payload and above) header compression. 6LoWPAN-
GHC is a generic compression scheme for all headers
and header-like structures but is a slightly less efficient
approach [14]. It is an alternative to our solution and we plan
to compare our 6LoWPAN-NHC with the 6LoWPAN-GHC
for the DTLS headers as future work.

III. BACKGROUND

Due to the heterogeneity in the IoT, it is challenging to
connect resource-constrained devices in a secure and reliable
way. Currently, different protocols such as CoAP [2], 6LoW-
PAN [15], the IPv6 Routing Protocol (RPL) [16] for Low-
power and Lossy Networks (LLNs) are being standardized
by the Internet Engineering Task Force (IETF) to enable
the IoT. The focus of this paper is to enable secure yet
efficient communication among IoT devices that utilize the
CoAP protocol. In this section, we highlight the technologies
involved in the development of the lightweight CoAPs, the
HTTPs variant for the IoT.

A. CoAP and DTLS

CoAP is a web protocol that runs over the unreliable UDP
protocol and is designed primarily for the IoT. CoAP is a
variant of the most used synchronous web protocol, HTTP,
and is tailored for constrained devices and machine-to-machine
communication. However, while CoAP provides a REST inter-
face similar to HTTP, it focuses on being more lightweight and
cost-effective than its variant for today’s Internet. To protect
CoAP transmissions, Datagram TLS (DTLS) has been pro-
posed as the primary security protocol [2]. Analogous to TLS-
protected HTTP (HTTPs), the DTLS-secured CoAP protocol
is termed CoAPs. A web resource on an IoT device can then
be accessed securely via CoAPs protocol as:
coaps://myIPv6Address:port/MyResource
As a basis for the discussion of our proposed DTLS com-
pression mechanisms, we give a brief overview of the DTLS
protocol.

DTLS guarantees E2E security of different applications
on a single machine by operating between the transport and
application layers. DTLS consists of two layers: the lower
layer contains the Record protocol and the upper layer contains
either of the three protocols namely Handshake, Alert, and
ChangeCipherSpec, or application data. The ChangeCipher-
Spec is used during the handshake process to merely indi-
cate that the Record protocol should protect the subsequent
messages with the newly negotiated cipher suite and security
keys. DTLS uses the Alert protocol to communicate the
error messages between the DTLS peers. Figure 2 shows the
structure of a DTLS message in an IP/UDP datagram.

The Record protocol [3] is a carrier for the upper layer pro-
tocols. The Record header contains among others content type
and fragment fields. Based on the value in the content type,
the fragment field contains either the Handshake protocol,

Fig. 2. Layout of a packet secured with DTLS.

Fig. 3. Full DTLS handshake protocol. Messages marked with a * are
optional.

Alert protocol, ChangeCipherSpec protocol, or application
data. The Record header is primarily responsible to crypto-
graphically protect the upper layer protocols or application
data once the handshake process is completed. The Record
protocol’s protection includes confidentiality, integrity protec-
tion and authenticity.

The DTLS Record is a rather simple protocol whereas the
Handshake protocol is a complex chatty process and contains
numerous message exchanges in an asynchronous fashion.
Figure 3 shows a full handshake process. The handshake
messages, usually organized in flights, are used to negotiate
security keys, cipher suites and compression methods. The
scope of this paper is limited to the header compression
only and not the cryptographic processing of Record and
Handshake protocols. For details of the individual handshake
messages we refer to TLS [17] and DTLS [3].

B. 6LoWPAN

The 6LoWPAN standard [1] defines header compression
and fragmentation mechanisms of IPv6 datagrams within
IPv6-connected WSNs, also called 6LoWPAN networks. The
compression mechanism consists of IP Header Compression
(IPHC) and Next Header Compression (NHC). The IPHC
encodings can compress the IPv6 header length to 2 bytes
for a single hop network and 7 bytes in a multi-hop case
(1-byte IPHC, 1-byte dispatch, 1-byte Hop Limit, 2-byte
Source Address, and 2-byte Destination Address). Among
other encoding bits in the IPHC is the NH bit that, when set,
indicates the next header is compressed using NHC. The NHC

3714 IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013

is used to encode the IPv6 extension headers and UDP header.
The size of NHC encodings is a multiple of octets (mostly one
octet) which contain variable length ID bits and the encoding
bits for a specific header. There are protocols that are part of
UDP payload and have header-like structures similar to IP and
UDP, such as DTLS, IKE [18]. It is therefore worth extending
the 6LoWPAN header compression mechanisms to compress
these protocol headers. The 6LoWPAN standard-defined NHC
encoding can be used to compress headers up to UDP, but not
the upper layers. A new NHC is needed because there is no NH
bit in the NHC for UDP which indicates that the UDP payload
is also compressed. In Section IV, we provide 6LoWPAN-
DTLS integration and 6LoWPAN NHCs to compress DTLS.

As depicted in Figure 1, the header compression is applied
within the 6LoWPAN network only, i.e., between constrained
nodes and the 6LoWPAN border Router (6BR). A 6BR
is used between 6LoWPAN networks and the Internet to
compress/decompress or/and fragment/reassemble messages
before forwarding between the two realms. In this IoT setup,
the CoAPs enabled devices can securely communicate with
internet hosts, such as standard computers, smartphones, etc.,
which support the CoAPs protocol. In order to adapt chatty
security protocols, such as DTLS, for the resource-constrained
IoT devices, it is beneficial to apply 6LoWPAN header com-
pression mechanisms to these protocols as well. In Section IV
we propose 6LoWPAN header compression mechanisms for
DTLS. It is very important to design these header compression
mechanisms in a way that complies with the DTLS standard,
to be interoperable with existing and new DTLS enabled hosts
on the conventional Internet.

IV. DTLS COMPRESSION

DTLS header compression, like IPHC, is applied only
within 6LoWPAN networks, i.e., between sensor nodes and
the 6BR. This is because the DTLS headers are part of
the UDP payload and all information required for routing is
already extracted at the IP layer. In this section, in addition
to describing 6LoWPAN header compression for DTLS, we
detail how our compressed DTLS can be linked to 6LoWPAN
in a standard compliant way.

A. DTLS-6LoWPAN Integration

In order to apply 6LoWPAN header compression mecha-
nisms to compress headers in the UDP payload, we either
require a modification in the current NHC encodings for UDP
in the 6LoWPAN standard, or need to define a new NHC for
UDP with different ID bits. The first solution requires mod-
ification in the current standard and hence is not a favorable
solution. The second solution, that we use in this paper, is
an extension to the 6LoWPAN standard; a similar approach
is adapted to distinguish NHC from GHC [14]. The ID bits
11110 in the NHC for UDP, as defined in the 6LoWPAN
standard, indicate that the UDP payload is not compressed.
We define ID bits 11011 to indicate that the UDP payload
is compressed with 6LoWPAN-NHC. The ID bits 11011 are
currently unassigned in the 6LoWPAN standard [1]. Figure 4
shows our proposed NHC for UDP that allows compression

Fig. 4. Our proposed 6LoWPAN-NHC for UDP, where ID bits 11011 indicate
that the UDP payload is compressed.

of UDP payload; in our case, the UDP payload contains the
6LoWPAN-NHC compressed DTLS headers.

In the following section we define 6LoWPAN-NHC for
the DTLS Record header, Handshake header, and handshake
messages where applicable.

B. 6LoWPAN-NHC for the Record and Handshake Headers

The Record protocol adds 13 bytes long header fields to
each packet that is sent throughout the lifetime of a device
that uses DTLS. The handshake protocol, on the other hand,
adds 12 bytes of header to handshake messages. We propose
6LoWPAN-NHC for compressing the Record and Handshake
headers, and reduce the header length to 5 and 3 bytes,
respectively. In case of Handshake, only during the first hand-
shake process the handshake header and handshake messages
are compressed. This is because the successive re-handshake
messages are encrypted using the negotiated cipher suite, and
it is not possible to inspect the payload of the DTLS record for
compression at the 6LoWPAN layer. In all cases the Record
header remains un-encrypted. Thus it is always compressed
by using the mechanism explained in this section.

In order to provide header compression for the Record
and Handshake header, we consider two cases. In the first
case, where the Record header fragment field (see Section III)
contains a handshake message, we compress both the Record
header and the Handshake header using a single encoding
byte and we define 6LoWPAN-NHC for Record+Handshake
(6LoWPAN-NHC-RHS). In the second case, we define
6LoWPAN-NHC for the Record header (6LoWPAN-NHC-R)
where the fragment field in the Record header is application
data and not a Handshake message as in the first case. The
6LoWPAN-NHC-R is applied after the DTLS handshake has
been performed successfully, and the subsequent messages are
encrypted and integrity protected. Figure 5a shows 6LoWPAN-
NHC encodings for the Record+Handshake header and for the
Record header. The encoded bits have the following functions:
The first four bits represent the ID field that is used to
distinguish 6LoWPAN-NHC-RHS from other encodings, and
to comply with 6LoWPAN-NHC encoding scheme. In case of
6LoWPAN-NHC-RHS we set the ID bits to 1000, and in case
of 6LoWPAN-NHC-R we set the ID bits to 1001.
Version (V): If 0, the version is the DTLS latest version which
is 1.2, and the field is omitted. If 1, the version field is carried
inline.
Epoch (EC): If 0, an 8 bit epoch is used and the left most 8
bits are omitted. If 1, all 16 bits of the epoch are carried inline.
In most cases the actual epoch is either 0 or 1. Therefore, an 8
bit epoch is used most of the time, allowing a higher space.3

3The space saving is 1 − (compressed_size/uncompressed_size).

RAZA et al.: LIGHTWEIGHT SECURE CoAP FOR THE IoT 3715

Fig. 5. Our proposed 6LoWPAN-NHC encodings for different DTLS headers. (a) Record and the Handshake header. (b) Client Hello message. (c) ServerHello
message.

Sequence Number (SN): The sequence number consists of
48 bits, of which some are leading zeros. If SN is set to 0,
a 16 bit sequence number is used and the left most 32 bits are
omitted. If 1, all 48 bits of the sequence number are carried
inline. In case of 6LoWPAN-NHC-R, as shown in Figure 5a,
we use two bits for SN and can more efficiently compress
the sequence_number field. Here if SN is set to 00, a 16 bit
sequence number is used and the left most 32 bits are omitted.
If 01, a 32 bit sequence number is used and the left most
16 bits are omitted. If 10, a 24 bit sequence number is used
and the left most 24 bits are omitted. If 11, all 48 bits of the
sequence number are carried inline.
Fragment (F): If 0, the handshake message is not frag-
mented and the fields fragment_offset and fragment_length
are omitted. This is the common case, which occurs when the
handshake message is not larger than the maximum record
size. If 1, the fields fragment_offset and fragment_length are
carried inline.

In the Record header, content_type field is always carried
inline. Furthermore, message_type and message_seq fields of
the Handshake header are always carried inline. The length
field in the Handshake headers is always omitted as it can
be deduced from the lower layers: either from the 6LoWPAN
header or the IEEE 802.15.4 header. We have to uncompress
layer-wise from lower to higher layers until the UDP header
is uncompressed. Then the length of the UDP payload is
known and the DTLS payload length can be calculated. The
length field in the Record header may also be omitted as we
expect only one DTLS record per UDP packet in constrained
environments. While a source device inside a 6LoWPAN sends
one DTLS record per UDP packet, a typical destination device
on the conventional Internet side may send multiple DTLS
records in a single UDP packet. However, as the 6BR performs
the compression/decompression of incoming packets, there is
the possibility to enforce one DTLS record per UDP packet
before routing these packets in 6LoWPAN networks.

C. 6LoWPAN-NHC for ClientHello

We propose 6LoWPAN-NHC for the ClientHello message
(6LoWPAN-NHC-C). During the handshake process the Clien-
tHello message is sent twice, the first time without cookie
and the second time with the server’s cookie. Figure 5b
shows 6LoWPAN-NHC encoding for the ClientHello message.

The function of each compressed header field is described
below:
The first four bits in the 6LoWPAN-NHC-CH represent the
ID field which are set to 1010.
Session ID (SI): If 0, the session_id is not available and this
field and 8 bits of the prefixed length field are omitted. In the
(D)TLS protocol, session_id is empty if no session is available,
or if the client wishes to generate new security parameters.
The ClientHello message uses session_id only if the DTLS
client wants to resume the old session. The actual session_id
field in the ClientHello contains 0 to 32 bytes. However, it is
always prefixed with an 8 bit field that contains the size of the
session_id. If SI is set 1, the session_id field is carried inline.
Cookie (C): If 0, the cookie field is not available and this
field and its prefixed 8 bits length field are omitted. The
actual cookie field in the ClientHello contains 0 to 255 bytes.4

However, it always has an 8 bits length field that contains the
size of the cookie. If C is set 1, the cookie field is carried
inline.
Cipher Suites (CS): If 0, the default (mandatory) cipher
suite for CoAP that supports automatic key management
is used and this field and the prefixed 16 bits length
field are omitted. In the current CoAP draft [2] TLS_
ECDHE_ECDSA_WITH_AES_128_CCM_8 is a mandatory
cipher suite. The actual cipher_suites field contains 2 to 216−1
bytes and is always prefixed with a 16 bits field that contains
the size of the cipher_suites. If CS is set 1, the cipher_suites
field is carried inline.
Compression Methods (CM): If 0, the default compression
method, i.e., COMPRESSION_NULL is used and this field
and the prefixed 8 bits length field are omitted. The actual
compression_methods field contains 1 to 28 − 1 bytes. It is
always prefixed with an 8 bits field that contains the size
of the compression_methods. If CM is set 1, the compres-
sion_methods field is carried inline.

The random field in the ClientHello is always carried inline
whereas the version field is always omitted. The version
contains the same value as in the DTLS Record header. In case
of TLS/SSL the version field was defined to let a TLS client
specify an older version to be compatible with an SSL client,
which is rarely used in practice. All current versions of web

4DTLS 1.2 specification increases the cookie size limit to 255 bytes;
however, our implementation and evaluation use a cookie size of 16 bytes.

3716 IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013

Fig. 6. An uncompressed full IP/UDP datagram containing a DTLS
ClientHello Message.

browsers use the same TLS version in Record and ClientHello.
DTLS 1.2 (adapted from TLS 1.2) [17] mentions that the
client sends its latest supported version in the ClientHello
message. All DTLS versions (1.0 and 1.2) have compatible
ClientHello messages. If the server does not support this
version, then the ServerHello message contains its supported
version. If the client is not capable of handling the server’s
version, it terminates the connection with a protocol version
alert.

Using 6LoWPAN-NHC-CH, usually only the random field
in the ClientHello message is transmitted and all the other
fields are omitted. with cookie may also contain the compress-
ible cookie field. Figure 6 shows an uncompressed IP/UDP
datagram that contains a ClientHello. A 6LoWPAN com-
pressed IP/UDP datagram, with our proposed compressed
DTLS, containing the ClientHello message is depicted in
Figure 7. After applying IPHC and 6LoWPAN-NHC header
compression, the datagram size is significantly reduced.

D. 6LoWPAN-NHC for ServerHello

We propose 6LoWPAN-NHC for the ServerHello mes-
sage (6LoWPAN-NHC-SH). ServerHello is very similar to
ClientHello except that the length of the cipher_suites and
compression_methods fields are fixed to 16 and 8 bits, respec-
tively. Figure 5c shows the 6LoWPAN-NHC encoding for the
ServerHello message. The function of each compressed header
field is described below: The first four bits in the 6LoWPAN-
NHC-SH represent the ID field set to 1011. Version (V):
In order to avoid version negotiation in the initial handshake,
the DTLS 1.2 standard suggests that the server implementation
should use DTLS version 1.0. If V is set to 0, the version is
DTLS 1.0 and the version field is omitted. However the DTLS

Fig. 7. A 6LoWPAN compressed full IP/UDP datagram containing a DTLS
ClientHello Message.

1.2 clients must not assume that the server does not support
higher versions or it will eventually negotiate DTLS 1.0 rather
than DTLS 1.2 [3]. If V is set to 1, the version field is carried
inline.
Session ID (SI), Cipher Suite (CS), and Compression Method
(CM) are encoded in a similar fashion as discussed in
Section IV-C. In order to not compromise security the random
field in the ServerHello is always carried inline.

E. 6LoWPAN-NHC for other Handshake Messages

The remaining mandatory handshake messages ServerHel-
loDone, ClientKeyExchange, and Finish have no fields that
could be compressed, hence all fields are carried inline.
The optional handshake messages Certificate that contains the
chain of certificates and CertificateVerify that contains the
digital signature of the handshake message are as well carried
inline. However, it is possible to compress some of the fields
inside a Certificate message which is out of the scope of this
paper. Pritikin et al. propose a scheme to compress X.509
certificates [19].

The ServerKeyExchange message is mostly not sent, either
due to crypto export restrictions or because the server’s
Certificate message contains enough information to concede
the client to exchange the premaster secret. However, if it
is sent, all fields are carried inline. In case of the optional
message CertificateRequest all fields can be omitted. This
is possible since the values for the fields certificate_types,
supported_signature_algorithms and certificate_authorities can
be pre-defined to a single set of supported and preferred
values for a 6LoWPAN network and all nodes in the net-
work use the same set of values. The 6BR can populate
the empty CertificateRequest message with the default set of
values before sending the message to the destination in the
conventional Internet. If no default set of values is defined for
the 6LoWPAN network, all fields are carried inline.

V. IMPLEMENTATION

We implement Lithe in Contiki [5], an open source operat-
ing system for the IoT. However, our proposed header com-
pression mechanisms in Lithe can be implemented in any OS
that supports 6LoWPAN. The Lithe implementation consists
of four main components: (i) DTLS, (ii) CoAP, (iii) CoAP-
DTLS integration module, (iv) DTLS header compression. For

RAZA et al.: LIGHTWEIGHT SECURE CoAP FOR THE IoT 3717

DTLS we use the open source tinyDTLS [20] implementation
which supports the basic cipher suite based on pre-shared keys:
TLS_PSK_WITH_AES_128_CCM_8. We adapt tinyDTLS for
the WiSMote platform and for the 20-bit address support
of msp430-gcc [21] (version of 4.7.0). For CoAP, we use
the default CoAP implementation [22] in the Contiki OS.
We develop the integration module that connects the CoAP
and DTLS implementations and enables the CoAPs protocol.
This integration allows the application independent access
to CoAPs where outgoing CoAP messages are transparently
handed to DTLS that transmits the protected messages to
the destination. All incoming CoAP messages are protected
through DTLS and therefore are processed first at the DTLS
layer and handed transparently to CoAP, which resides in the
application layer.

We implement our proposed header compression as an
extension to the 6LoWPAN implementation in the Contiki OS.
The 6LoWPAN layer resides between the IP and Medium
Access Control (MAC) layers. The packets from the IP layer
that are ready to be transmitted from the node are considered
as output packets. The packets from the MAC layer that
are received to the node are considered as input packets.
The 6LoWPAN layer processes all UDP packets from both
directions. Therefore, we use two ways to distinguish UDP
packets that carry DTLS messages as payload from other
UDP packets. In the case of input packets, the pre-configured
default DTLS port is used to identify CoAPs messages. In the
second case when the packet is received from the MAC
layer, the DTLS port and the ID bits in the NHC-for-UDP
and in the NHC for DTLS headers are used to distinguish
the compressed headers from the uncompressed. Details are
provided in Section IV.

Furthermore, it is important to emphasize, that while apply-
ing header compression, the E2E security of DTLS is not
compromised. This is due to the design of DTLS and our effort
to remain standard-compliant. The header fields are, after final
negotiation of the cipher suite, integrity protected within the
Record layer. During the compression/decompression process
the original headers are not modified and the integrity pro-
tection is maintained. After decompression in the 6LoWPAN
layer, the integrity of the packet is checked in the DTLS layer.
The correctness of integrity protection serves as well as a proof
of correct decompression.

VI. EVALUATION

We evaluate Lithe on real sensor nodes running the Contiki
OS. We use WiSMote [23] as our hardware platform. WiS-
Motes are equipped with (i) a 16 MHz, MSP430 5-Series,
16-bit RISC microcontroller, (ii) 128/16 kB of ROM/RAM,
and (iii) an IEEE 802.15.4 (CC2520) transceiver. We select
WiSMotes because of the RAM and ROM requirements of
the DTLS implementation, which is discussed in more detail
in Section VI-B. The network setup consists of two WiSMotes
which communicate directly through the radio. The CC2520
transceiver provides an AES-128 security module. However,
for our evaluation we do not use the AES hardware support and
rely on software AES. Leveraging the AES hardware support

TABLE I

NUMBER OF BITS SENT AND SPACE SAVING

for the cryptographic computations involved in DTLS would
lead to higher performance. The focus of our evaluation is
on the impact of DTLS header compression on response time
and energy consumption of nodes. Therefore, the performance
loss due to software AES is not affecting our evaluation.
Furthermore, we do not enable link layer security support,
in order to be able to analyze the processing overhead of
compression separately. In our previous work [24], we have
evaluated the performance gains when using the AES support
in hardware. There, we implement and evaluate the IEEE
802.15.4 link layer security.

A. Packet Size Reduction

Using 6LoWPAN-NHC compression mechanisms we can
significantly reduce the length of DTLS headers. Table I shows
that our proposed DTLS header compression significantly
reduces the number of header bits which results in a similar
reduction of radio transmission time.

The Record header, included in all DTLS messages, can be
compressed by 64 bits saving 62% of space for each message.
In the case of the Handshake header, a space saving of 75%
is achieved. Application data constitutes the highest amount
of DTLS messages. Reducing the Record header from 104
to 40 bits, allows for transmission of 64 bits more payload
per packet. Packets that are larger than the link layer MTU
are fragmented. Fragmentation does not only introduce more
overhead to the node and the network, it brings also security
vulnerabilities [4] along. Therefore, it is preferable to avoid
fragmentation, whenever possible. Using compression we
avoid fragmentation or decrease the number of fragments when
the payload is slightly above the fragmentation threshold. Fur-
thermore, reducing the transmitted bits in constrained networks
has a huge impact on the performance and lifetime of the
network. Radio communication typically has an about 10 times
higher energy consumption than in-node computations [23].
The tradeoff with compression is between additional in-
node computation overhead for compression/decompression
vs. reducing radio transmissions. The impact of this tradeoff
is discussed in more detail in Section VI-C.

B. RAM and ROM Requirement

We analyze static RAM and ROM usage with the msp430-
size and msp430-objdump tools in the MSP430 toolchain.

3718 IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013

TABLE II

ROM AND STATIC RAM REQUIREMENTS FOR LITHE

As depicted in Table II, in total 59.4 kB of ROM and 9.2 kB
of RAM are required for Lithe.

The DTLS implementation including the cryptographic
functionalities and the DTLS state-machine requires 16.8 kB
of ROM and 3.7 kB of RAM. This makes DTLS the major
contributor of ROM after the OS. The CoAP-Server requires
8 kB of ROM and 0.5 kB of RAM. Our CoAP-Server provides
a single resource, that upon a CoAP GET request, sends back
a response message with variable payload lengths. This is
used in our evaluation to analyze the effect of compression on
CoAPs messages with different payload lengths. The footprint
of the CoAP implementation depends on the offered resources.
The implementation of our DTLS header compression 2820 B
of ROM and 1 B of static RAM. The 1 B of static RAM holds
the compression state of the UDP header. The total ROM used
by 6LoWPAN in Contiki for compression and fragmentation
(without DTLS compression) is 3782 B. This verifies that the
compressed DTLS uses the same order of ROM as standard
6LoWPAN. Today’s sensor nodes, such as WiSMote, with
128 kB of ROM can surely accommodate compressed CoAPs
along with other operating system components, and still offer
significant space to applications.

C. Run-Time Performance

We look at the run-time performance gains that we achieve
when compressed DTLS is used and compare it with uncom-
pressed DTLS. We conduct these experiments in a 6LoW-
PAN network with enabled Radio Duty Cycling (RDC) and
respectively with no RDC. When RDC is used, the radio
is off most of the time and is turned on either in certain
intervals to check the medium for incoming packets or to
transmit packets. We use the duty cycled MAC protocol,
X-MAC [25] with its default settings, provided in the Con-
tiki OS. In our run-time performance evaluation, we focus on
sensor node’s energy consumption and network-wide round
trip time. For the evaluation of energy consumption, we use the
energy estimation module [26] provided by Contiki OS. This
module provides the usage time of CPU, LPM, transmitter
and transceiver for a certain function call. The absolute timer
values for each of these components can be converted to
energy with the following equation:

Energy [m J] = ticks × I [m A] × Voltage [V]
ticks per second

(1)

1) DTLS Compression Overhead: The overhead caused
through in-node computation for compression and decom-
pression of DTLS headers is almost negligible. However,
we measure and show it for the sake of completeness.

Fig. 8. The energy consumption of individual compressed DTLS mes-
sages: ClientHello (CH), ClientHello with Cookie (CH(C)), ClientKeyEx-
change (CKE), HelloVerify (HV), ServerHello (SH), ServerHelloDone (SHD).

TABLE III

AVERAGE ENERGY CONSUMPTION FOR PACKET TRANSMISSION

DURING DTLS HANDSHAKE FOR THE PSK CIPHER SUITE WITH

NO RDC. IN AVERAGE 15% ENERGY SAVING FOR THE

TRANSMISSION IS ACHIEVED BY COMPRESSION.

Figure 8 shows the additional energy consumed for compres-
sion (compressing/decompressing) of the handshake messages.
Each handshake message consists of the both Record and
Handshake headers. For a DTLS handshake based on pre-
shared keys, on average, 4.2 uJ of energy is consumed for
compression.

2) CoAPs Initialization: During the CoAPs initialization
phase a secure session is established between the two com-
municating end-points using the DTLS handshake protocol.
The handshake process uses both the Record and Handshake
headers, which means that both of these headers can be
compressed. The tradeoff between additional in-node com-
putation vs. reduced packet sizes shows itself in the energy
consumption for packet transmission in a DTLS handshake.
Table III compares the energy consumption required for trans-
mission for the case compression is applied and respectively
for the case, where compression is not applied. On average
15% less energy is used to transmit (and receive) compressed
packets. This is due to smaller packet sizes achieved through
compression.

3) CoAPs Request-Response: Once the CoAPs initialization
phase is completed, i.e., the handshake has been performed,
a sensor node can send/receive secure CoAP messages using
the DTLS Record protocol. Although the Handshake protocol
is, compared to the Record protocol, a more resource hungry
protocol, it is performed only once during the initialization
phase and/or later (rarely) for re-handshake.

In order to measure the performance of compression of the
Record Header, we measure the energy consumption and the
round trip time (RTT) for the processing of CoAP request-
response messages. We start our measurements when the
client prepares the CoAP request, and stop after the server’s

RAZA et al.: LIGHTWEIGHT SECURE CoAP FOR THE IoT 3719

(a) (b)

Fig. 9. The energy consumption of CoAPs messages when radio duty cycling is off shows that the compressed CoAPs message consumes less energy; the
difference is significant when the messages are fragmented at the 6LoWPAN layer. (a) Energy consumed by client and server on transmission while sending
compressed and uncompressed CoAPs messages of different data sizes. (b) Combined energy consumed by client and server on transmissionwhile sending
compressed and uncompressed CoAPsmessages of different data sizes.

Fig. 10. Comparison of round trip time for Lithe, plain CoAPs, and CoAP. (a) With radio duty cycling. (b) Without radio duty cycling.

response is received and processed. The corresponding CoAP
response contains varying payload lengths. To be more precise,
eight different payload sizes in the range of 0 to 48 bytes
are used. We select 48 bytes, because with 48 byte CoAP
payload 6LoWPAN fragmentation is performed in case of
plain CoAPs. However, Lithe does not trigger fragmentation,
due to reduced bits by means of compression. This effect is
visible in Figure 9a, which shows the average in-node energy
consumption on CoAPs’ client and server for transmitting
compressed and uncompressed CoAPs request and response
pairs of different sizes with no RDC. The transmission of
CoAP GET requests has the same amount of energy consump-
tion since the size of request messages are always constant.
Hence, energy consumption for CoAPs requests is always
reduced by 10% using compression. The energy savings for
the CoAPs response messages depend on the payload length
and whether compression can prevent fragmentation. The latter
is the case for a payload length of 48 byte. Hence, the energy
saving is in the range of 4-26%, where the highest energy
saving is for 48 byte.

For analyzing the overall energy consumption savings for
CoAPs request-responses, we sum up energy consumption for

packet transmission on the server and client, as depicted in
Figure 9b. We observe that in average energy savings of about
7% are achieved. However, in the case where fragmentation is
avoided through compression, the savings increase to 20.6%.
This is due to the fact, that with 48 byte payload, 6LoWPAN
transmits the packet within two fragments, whereas with
compression the packet is transmitted without fragmentation.

The reduced transmission time affects as well the RTT for
a CoAPs request-response message. In the case of no RDC,
as shown in Figure 10b, the RTT is in average 1.5% smaller,
except for 48 byte payload. There, the RTT with compression
is even 77% smaller, since fragmentation is avoided. In order
to assess the overall overhead caused through security, we have
as well added values for CoAP without security. The RTT
in CoAP without security is on average 1/3 of the CoAPs,
as long as no fragmentation is needed. Looking at the RTT
with RDC, as shown in Figure 10b we see that for all three
cases of: (i) CoAP without any security, (ii) plain CoAPs, and
(iii) CoAPs with DTLS compression (Lithe), RTT values are
in the same range, expect for CoAP response messages with
48 byte payload. This is a side-effect of RDC. RDC saves
energy by putting the radio into sleep for the most of the time.

3720 IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013

However, this happens at the cost of higher latency. Packets
in RDC networks are not transmitted directly. The sender has
to wait until the receiver wakes up and in the worst case this
might be the whole sleeping interval of the receiver. As a
result, the overall RTT is higher than when no RDC is used.
We observe that in networks with RDC, in case compression
prevents fragmentation or decreases the number of fragments,
the RTT is significantly reduced. For example, in Figure 10b
for 48 byte payload, compression leads to 50% shorter RTT.

VII. CONCLUSION

CoAP enabled hosts will be an integral part of the Internet of
Things (IoT). Furthermore, real world deployments of CoAP
enabled devices require security solutions. To this end, DTLS
is the standard protocol to enable secure CoAP (CoAPs). In
this paper, we investigate the possibility of reducing the over-
head of DTLS by means of 6LoWPAN header compression,
and present the first DTLS header compression specification
for 6LoWPAN. We quantitatively show that DTLS can be
compressed and its overhead is significantly reduced using
6LoWPAN standardized mechanisms. Our implementation and
evaluation of compressed DTLS demonstrate that it is possible
to reduce the CoAPs overhead as the DTLS compression
is efficient in terms of energy consumption and network-
wide response time, when compared with plain CoAPs. The
difference between compressed DTLS and uncompressedd
DTLS is very significant, if the use of uncompressed DTLS
results in 6LoWPAN fragmentation.

As future work we plan to deploy Lithe in a real world
IoT system with a real application scenario. Such an IoT
setup consists of constrained devices, standard computers, and
smartphones. A real world deployment helps us to thoroughly
evaluate in an heterogeneous IoT, and ultimately demonstrate
the use of Lithe in security sensitive applications.

REFERENCES

[1] Compression Format for IPv6 Datagrams Over IEEE 802.15.4-Based
Networks, RFC Standard 6282, Sep. 2011.

[2] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. (2013, May). Con-
strained Application Protocol (CoAP). Internet-Draft draft-ietf-core-
coap-16 [Online]. Available: http://datatracker.ietf.org/drafts/current/

[3] Datagram Transport Layer Security Version 1.2, RFC Standard 6347,
Jan. 2012.

[4] R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh, and K. Wehrle,
“6LoWPAN fragmentation attacks and mitigation mechanisms,” in Proc.
6th ACM Conf. Security Privacy Wireless Mobile Netw., Apr. 2013,
pp. 55–66.

[5] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—A lightweight and
flexible operating system for tiny networked sensors,” in Proc. 29th
Annu. IEEE Int. Conf. Local Comput. Netw., Nov. 2004, pp. 455–462.

[6] T. Heer, O. Garcia-Morchon, R. Hummen, S. Keoh, S. S. Kumar, and
K. Wehrle, “Security challenges in the IP-based internet of things,”
Wireless Pers. Commun. J., vol. 61, no. 3, pp. 527–542, 2011.

[7] S. Raza, S. Duquennoy, A. Chung, D. Yazar, T. Voigt, and U. Roedig,
“Securing communication in 6LoWPAN with compressed IPsec,”
in Proc. 7th Int. Conf. DCOSS, Barcelona, Spain, Jun. 2011,
pp. 1–8.

[8] J. Granjal, E. Monteiro, and J. S. Silva, “Network-layer security for the
internet of things using TinyOS and BLIP,” Int. J. Commun. Syst., 2012,
doi: 10.1002/dac.2444.

[9] M. Brachmann, S. L. Keoh, O. G. Morchon, and S. S. Kumar, “End-to-
end transport security in the IP-based internet of things,” in Proc. 21st
ICCCN, Aug. 2012, pp. 1–5.

[10] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle, “A DTLS
based end-to-end security architecture for the internet of things with
two-way authentication,” in Proc. IEEE 37th Conf. Local Comput. Netw.
Workshops, Oct. 2012, pp. 956–963.

[11] J. Granjal, E. Monteiro, and J. S. Silva, “On the feasibility of secure
application-layer communications on the web of things,” in Proc. IEEE
37th Conf. LCN, Oct. 2012, pp. 228–231.

[12] S. Keoh, S. Kumar, and O. Garcia-Morchon. (2013, Feb.). Secur-
ing the IP-Based Internet of Things with DTLS, [Online]. Available:
http://www.ietf.org/1id-abstracts.html

[13] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Making certificate-based authentication viable for the web of things,”
in Proc. 2nd ACM Workshop HotWiSec, Apr. 2013.

[14] C. Bormann. (2012, Mar.). 6LoWPAN Generic Compression of Headers
and Header-Like Payloads. Internet-Draft draft-bormann-6lowpan-ghc-
04.txt [Online]. Available: http://datatracker.ietf.org/drafts/current/

[15] IPv6 Over Low-Power Wireless Personal Area Networks (6LoWPANs):
Overview, Assumptions, Problem Statement, and Goals, RFC Standard
4919, Aug. 2007.

[16] RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, RFC
Standard 6550, Mar. 2012.

[17] The Transport Layer Security (TLS) Protocol Version 1.2, RFC Standard
5246, Aug. 2008.

[18] Internet Key Exchange Protocol Version 2 (IKEv2), RFC Standard 5996,
Sep. 2010.

[19] D. McGrew and M. Pritikin. (2010, May). The Compressed X.509 Cer-
tificate Format. Internet-Draft draft-pritikin-comp-x509-00.txt [Online].
Available: http://www.ietf.org/ietf/1id-abstracts.txt

[20] O. Bergmann. (2013, Feb. 15). tinyDTLS [Online]. Available:
http://tinydtls.sourceforge.net/

[21] Texas Instruments. (2013, Feb. 15). MSPGCC, Dallas, TX, USA
[Online]. Available: http://sourceforge.net/projects/mspgcc/

[22] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for
Contiki,” in Proc. IEEE 8th Int. Conf. MASS, Oct. 2011, pp. 855–860.

[23] LCIS and Aragosystems. (2013, Feb. 15). WiSMote Sensor Node,
Valbonne, France [Online]. Available: http://wismote.org/

[24] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt, “Secure
communication for the internet of things—A comparison of link-layer
security and IPsec for 6LoWPAN,” Security Commun. Netw., Jan. 2012,
doi: 10.1002/sec.406.

[25] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A short
preamble mac protocol for duty-cycled wireless sensor networks,” in
Proc. 4th Int. Conf. Embedded Netw. Sensor Syst., New York, NY, USA,
2006, pp. 307–320.

[26] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, “Software-based on-line
energy estimation for sensor nodes,” in Proc. 4th Workshop Embedded
Netw. Sensors, New York, NY, USA, 2007, pp. 28–32.

Shahid Raza, photograph and biography not available at the time of publi-
cation.

Hossein Shafagh, photograph and biography not available at the time of
publication.

Kasun Hewage, photograph and biography not available at the time of
publication.

René Hummen, photograph and biography not available at the time of
publication.

Thiemo Voigt, photograph and biography not available at the time of
publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

