Project Overview

• Introduction
 o Motivation
 o Cognitive Radio
 o TV White Space

• Dynamic Spectrum Access
 o Spectrum Sensing
 o Spectrum Analysis
 o Spectrum Decision

• Implementation
 o Hardware
 o Software
Project Overview

• **Introduction**
 - Motivation
 - Cognitive Radio
 - TV White Space

• **Dynamic Spectrum Access**
 - Spectrum Sensing
 - Spectrum Analysis
 - Spectrum Decision

• **Implementation**
 - Hardware
 - Software
Motivation
Motivation

• Low utilization
 o Caused by inefficient fixed frequency allocations instead of physical shortage of spectrum.

• Dynamic Spectrum Access (DSA):
 o To increase spectrum efficiency via spectrum sensing, probing and connectivity in cognitive radio networks.

• Cognitive Radio (CR) networks:
 o Primary User (PU) and Secondary User (SU)
 o PUs (licensed) have priority over SUs (Secondary) when accessing the wireless channel.
Cognitive Radio Networks

![Diagram of Cognitive Radio Networks](image)

- **Power** axis
- **Frequency** axis
- **Time** axis
- **Spectrum holes**
- **Dynamic Spectrum Access (DSA)**
- **Spectrum occupied by primary users**
Cognitive Radio Networks

Diagram:
- Radio Environment
- Transmitted Signal
- Spectrum Decision
- Spectrum Sensing
- Spectrum Holes Information
- Spectrum Analysis
- Channel Capacity
- RF Stimuli

The diagram illustrates the cycle of cognitive radio networks with the interaction between each component.
TV White Space (TVWS)

- TVWS, defined by FCC, means unused TV spectrum

NTSC Channel Spectrum
National Television System Committee (NTSC)
An analogy television system

DTV-ATSC Spectrum
Advanced Television System Committee (ATSC)
A digital television system
Spectrum Sensing Function Stack

- **Network**
 - Cooperative/Distributed Topology Management

- **Link**
 - Spectrum Sensing Policies
 - Interference Temperature

- **MAC**
 - Spectrum Sensing Management

- **Physical**
 - Sensing Algorithm
 - Wideband/narrow band sensing
 - Low SNR Detection
Project Overview

• Introduction
 o Motivation
 o Cognitive Radio
 o TV White Space

• Dynamic Spectrum Access
 o Spectrum Sensing
 o Spectrum Analysis
 o Spectrum Decision

• Implementation
 o Hardware
 o Software
Dynamic Spectrum Access (DSA)

- Step 1. Spectrum Sensing
- Step 2. Spectrum Analysis
- Step 3. Spectrum Decision
DSA – Spectrum Sensing

• The secondary users (SU) need to detect the presence of primary users (PU) in a licensed spectrum.
• If a PU emerges, the SU should quit ASAP in order to avoid interference to PUs.
DSA – Spectrum Sensing

• Energy Detection (ED):

 - The PSD of the signal is passed through a Band Pass Filter to select the channel.
 - Then integrated over time interval, i.e., the observation interval.
 - The output of the integrator is compared to a predefined threshold (H₀/H₁)
Comments on Energy Detection (ED)

• Advantages:
 o Simple
 o Is not required to know the primary user signal in advance.

• Disadvantages:
 o A pure energy detection scheme is confounded by the in-band interference because it is not robust against spread spectrum signals
 o Its performance severely suffers under fading conditions
DSA – Spectrum Analysis

• S_0: Scenario when only noise exists

 \[S_0 : y(n) = w(n) \]

• S_1: Scenario when both noise and signal exist.

 \[S_1 : y(n) = s(n) + w(n) \]

• The decision metric for the energy detector:

 \[M = \sum_{n=0}^{N} |y(n)|^2 \]

 M is used in Spectrum decision step by comparing M with the threshold λ_E.
DSA – Spectrum Decision

• Spectrum Decision is implemented by comparing M with λ_E

• Probability of detection: $P_D = P_r(M > \lambda_E | S_1)$

• Probability of false alarm: $P_F = P_r(M > \lambda_E | S_0)$

So: Scenario when only noise exists
S1: Scenario when both noise and signal exist.
Project Overview

• Introduction
 o Motivation
 o Cognitive Radio
 o TV White Space

• Dynamic Spectrum Access
 o Spectrum Sensing
 o Spectrum Analysis
 o Spectrum Decision

• Implementation
 o Hardware
 o Software
Hardware – Raspberry Pi B 2

<table>
<thead>
<tr>
<th>Model</th>
<th>Raspberry Pi 2 Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>900 MHz quad-core ARM Cortex-A7</td>
</tr>
<tr>
<td>Memory (SDRAM)</td>
<td>1 GB (Shared with GPU)</td>
</tr>
<tr>
<td>GPU</td>
<td>Broadcom Video Core IV @ 250 MHz</td>
</tr>
</tbody>
</table>
Hardware – 3.5” PiTFT Display

480 x 320 resolution; Touch screen; Use SPI and GPIO pins.
Hardware – RTL-SDR

RTL2832u

REALTEK

R820T Tuner: 24 - 1766 MHz;
Sample Rate: 2.56 MSamples/s.
Software

• Linux Modified Kernel
• FreqShow
• Scan Function
• Report
Software – Linux Modified Kernel

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Rasbian Wheezy (Debian 7.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>Linux 4.1.6</td>
</tr>
<tr>
<td>GCC</td>
<td>4.6.3</td>
</tr>
<tr>
<td>CMAKE</td>
<td>2.8.9</td>
</tr>
<tr>
<td>Python</td>
<td>2.7.3</td>
</tr>
</tbody>
</table>
Software – FreqShow

Waterfall Spectrum from 89.1 MHz to 91.5 MHz

Spectrum from 89.1 MHz to 91.5
Software – Add New Function: Scan
Scan Screen

- Previous Channel
- Next Channel
- Create Report
Scan Screen

Pause the data

Quit the program
Scan Screen
Scan Screen

High Peak Value

Low Peak Value

Energy
Scan Screen

Lower Frequency
Channel Number
Higher Frequency
Report Formatted

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Energy in dB</th>
<th>Average Power in dB</th>
<th>Peak Value in dB</th>
<th>Frequency of peak in Mhz</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>13.68</td>
<td>6.94</td>
<td>19.2</td>
<td>470.95</td>
</tr>
<tr>
<td>15</td>
<td>14.27</td>
<td>8.48</td>
<td>20.74</td>
<td>476.68</td>
</tr>
<tr>
<td>16</td>
<td>12.33</td>
<td>6.63</td>
<td>19.19</td>
<td>482.94</td>
</tr>
<tr>
<td>17</td>
<td>14.24</td>
<td>8.4</td>
<td>20.1</td>
<td>488.95</td>
</tr>
<tr>
<td>18</td>
<td>16.23</td>
<td>10.17</td>
<td>22.53</td>
<td>494.63</td>
</tr>
<tr>
<td>19</td>
<td>16.44</td>
<td>9.88</td>
<td>21.49</td>
<td>500.47</td>
</tr>
</tbody>
</table>
Contribution

1. Learned:
 Dynamic Spectrum Control, Cognitive Radio, TV White Space, etc.

2. Configured:
 Raspberry Pi 2 with 3.5” TFT touch screen and RTL-SDR

3. Implemented:
 Energy Detection function in Python
Live Demonstration
Show the sensor working