

Integrating Wireless Sensor
Networks with the Web

W.Colitti, K. Steenhaut and N. De Caro

Information Processing in

Sensor Networks Conference 2011

Presenter - Bob Kinicki

Internet of Things

Fall 2015

Outline
 Introduction

– REST

 CoAP
– Request/response Layer

– Transaction Layer

 CoAP versus HTTP Power Consumption
Evaluation

 Integrating CoAP-based WSN with
HTTP-based Web Application

 Conclusions and Critique

 Internet of Things CoAP vs HTTP Performance 2

Introduction

 This paper is highly cited because it discusses an early
Contiki implementation of the Constrained Application
Protocol (CoAP) on Tmote Sky sensor motes.

 REpresentationl State Transfer (REST) identifies a
resource (an object) controlled by the server by a URI
(Universal Resource Identifier). {Note – the sensor is
viewed as the server in this abstraction.}

 Majority of REST architectures use HTTP with its
commands: GET, PUT, POST and DELETE.

Internet of Things CoAP vs HTTP Performance 3

REST

 IETF Constrained RESTful environments (CoRE)
Working Group standardized the web service
paradigm into networks of smart objects.

 In the Web of Things (WoT), object
applications are built on top of the REST
architecture.

 The CoRE group defined a REST-based web
transfer protocol called Constrained
Application Protocol (CoAP).

4 Internet of Things CoAP vs HTTP Performance

CoAP
 CoAP manipulates Web resources using the
same methods as HTTP: GET, PUT, POST
and DELETE.

 CoAP is a subset of HTTP functionality re-
designed for low power embedded devices
such as sensors (for IoT and M2M).

 CoAP’s two layers are:
– Request/Response Layer

– Transaction Layer

5 Internet of Things CoAP vs HTTP Performance

CoAP versus HTTP

6 Internet of Things CoAP vs HTTP Performance

 TCP overhead is too high and its flow control is not

appropriate for short-lived transactions.

 UDP has lower overhead and supports multicast.

Called messaging layer

in previous paper.

CoAP

 Request/Response layer :: is responsible for
transmission of requests and responses. This
is where REST-based communication occurs.

– REST request is piggybacked on
Confirmable or Non-confirmable message.

– REST response is piggybacked on the
related Acknowledgement message.

 CoAP uses tokens to match request/response
in asynchronous communications.

7 Internet of Things CoAP vs HTTP Performance

CoAP

 Transaction layer :: handles single
message exchange between end points.

 Four message types:
– Confirmable – requires an ACK.

– Non-confirmable – no ACK needed.

– Acknowledgement – ACKs a Confirmable.

– Reset - indicates a Confirmable message
has been received but context is missing
for processing.

8 Internet of Things CoAP vs HTTP Performance

CoAP

 CoAP provides reliability without using
TCP as transport protocol.

 CoAP enables asynchronous communication.
– e.g, when CoAP server receives a request
which it cannot handle immediately, it first
ACKs the reception of the message and
sends back the response in an off-line
fashion. {Not implemented in this study!}

 The transaction layer also supports
multicast and congestion control.

 9 Internet of Things CoAP vs HTTP Performance

COAP Efficiencies
 CoAP design goals:: small message overhead
and limited fragmentation.

 CoAP uses compact fixed-length 4-byte binary
header followed by compact binary options.

 Typical request with all encapsulation has a
10-20 byte header.

 CoAP implements an observation relationship
whereby an “observer” client registers itself
using a modified GET to the server.

 When resource (object) changes state, server
notifies the observer.

10 Internet of Things CoAP vs HTTP Performance

CoAP vs HTTP
Power Consumption Evaluation

 CoAP server implemented on Tmote
Sky sensor motes running Contiki with
6LowPAN/RPL.
– Asynchronous transactions, observations
and congestion control were missing!

 HTTP server implemented using same
motes.

 In experiments, client requests
temperature and humidity from server
every 10 secs. for 20 minutes.

Internet of Things CoAP vs HTTP Performance 11

Power Consumption Tests

 Both CoAP and HTTP servers respond
using JSON (lightweight text standard)
and not XML.

 Example response from server:

Internet of Things CoAP vs HTTP Performance 12

{"sensor":"0212:7400:0002:0202",

"readings":{"hum":31,"temp":23.1}}

 Lower bytes of IP address

identifies the sensor mote.

Table 1: CoAP vs HTTP Power Usage

13 Internet of Things CoAP vs HTTP Performance

 HTTP transaction bytes are 10 times higher than

CoAP transaction bytes due to 6LoWPAN and

CoAP header compression.

 CoAP packet can be sent in single IEEE802.15.4

frame without fragmentation.

 Less bytes  lower power consumption and longer

lifetime for CoAP.

Integrating CoAP in WSN
with Web Application

Internet of Things CoAP vs HTTP Performance 14

 Authors introduce an end-to-end IP based architecture

that integrates CoAP over WSN with HTTP web

application using a gateway.

 System designed for greenhouse monitoring, but only a

prototype implemented here!

Gateway Design and Development

Internet of Things CoAP vs HTTP Performance 15

 Contiki gateway attached to Linux machine via USB.

 As a prototype, application server and CoAP data

collection functionality are in the same machine.

 Web client sends requests for WSN resources to Web

server in gateway using HTTP.

Gateway Design and Development

Internet of Things CoAP vs HTTP Performance 16

 Web server retrieves resource data either
from database (a gateway caching mechanism)
or from the CoAP client.

 Web server either requests ‘fresh’ data from
the WSN or receives data from the CoAP
client (subscribe/publish) triggered by changes
in resource at the CoAP server. {Web server
bypasses database in both cases.}

 Authors use GWT (Google Web Toolkit) to
develop Web application.

Gateway Database

 Since CoAP client receives WSN data in
JSON, storing documents as JSON in
Apache CouchDB provides RESTful API.

 Implementation was NOT tested under
high frequency conditions.

 Authors worry about database caching
mechanism becoming the bottleneck!

Internet of Things CoAP vs HTTP Performance 17

CoAP Client

 libcoap CoAP client communicates with the
WSN.

 Since Contiki support for observations was
not yet available, CoAP client does not
handle publish packets from mote server.

 CoAP client adds timestamp to JSON data
to support historical web server requests.

Internet of Things CoAP vs HTTP Performance 18

Gateway Implementation

 Gateway does not provide proxy
functionality that converts HTTP
requests to CoAP and vica versa.

 Web server invokes CoAP client with
HTTP request parameters  gateway
is not transparent to the application
and to the WSN.

 Gateway needs proxy functionality to
support complicated operations such as
observations.

Internet of Things CoAP vs HTTP Performance 19

Conclusions

 Authors provide IoT community with
CoAP vs HTTP measurements that show
power improvements from the µIP stack.

 Prototype gateway is a ‘proof-of-
concept’ that matched the CoAP
functionality built into Contiki in 2011.

 Paper encouraged proxy development.

Internet of Things CoAP vs HTTP Performance 20

Critique

 This is a good short paper  IPSN is a
respectable conference in sensor area.

 CoAP explanation is clearer than in
previous paper.

 There are several grammar/typo
mistakes in the paper.

 Performance results could have included
more than just power.

Internet of Things CoAP vs HTTP Performance 21

