Internet Introduction
and
HTTP and DNS Examples
Layering and Abstraction

• Abstractions can be used to hide complexity.
• Abstraction naturally leads to layering.
• Layering provides an abstraction for functional locality.
• Layering simplifies the design process and adds flexibility when modifying and developing the network.
Layering and Abstraction

- Layering accommodates incremental changes.
- It is possible to have alternative abstractions at each layer.

<table>
<thead>
<tr>
<th>Application programs</th>
<th>Request/reply channel</th>
<th>Message stream channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host-to-host connectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware
Applications and Layered Architectures [LG&W pp.43-49]

In the 1970’s vendor companies (IBM and DEC) developed proprietary networks with the common feature of grouping communication functions into related and manageable sets called layers.

network architecture :: a set of protocols that specify how every layer is to function and well-defined interfaces between the layers.
The Internet and an internet

An internet :: involves the *interconnection* of multiple networks into a single large networks.

The “Internet” :: refers to the successor to ARPANET.

IP (the Internet Protocol) :: provides *connectionless* transfer of packets across an internet.
An internet

G = gateway

Leon-Garcia & Widjaja: Communication Networks

Computer Networks: Internet Introduction
IP

• **Currently provides** *best-effort service*
 – packets may be lost (i.e., IP is unreliable).

• **General design philosophy**
 – Keep internal operations simple by relegating complex functions to the edge of the subnet.
 – IP can operate over any network.
 – allow IP to scale!!!
 – *The end-to-end mechanisms are responsible for recovery of packet losses and congestion control.*
IPv4

- Uses *hierarchical address space with location information embedded in the structure.*

- IP address is usually expressed in *dotted-decimal notation* (e.g., 128.100.11.56).
The Internet

• Provides a *name space* to refer to machines connected to the Internet (e.g. chablis.cs.wpi.edu).

• The name space is hierarchical, but it is only administrative. The name space is not used in network routing operations.

• DNS (Domain Name Service) provides automatic translation of names to IP addresses.
Internet Architecture

- Defined by the Internet Engineering Task Force (IETF).
- Referred to as an “Hourglass” design.
- Application vs Application Protocol (FTP, HTTP)
HTTP → TCP → IP → Network Interface 1
SMTP → TCP → IP → Network Interface 2
DNS → TCP → IP → Network Interface 2
RTP → UDP → IP → Network Interface 3
Interfaces

Host 1

Service interface

High-level object

Protocol

Peer-to-peer interface

Host 2

High-level object

Protocol

P&D slide

Computer Networks: Internet Introduction
Protocol Machinery

- Protocol Graph
 - most peer-to-peer communication is indirect
 - peer-to-peer is direct only at hardware level
ISO Architecture

One or more nodes within the network
Layering Example

Client/server relationship

- Server process waits for incoming requests by listening to a port.
- Client process makes requests as required.
- Server process provides responses to these requests.
- The server process usually runs in the background as a daemon (e.g. httpd is the server daemon for HTTP).
HTTP Example

- HTTP (HyperText Transfer Protocol) specifies rules by which the client and the server interact so as to retrieve a document.
- The protocol assumes the client and the server can exchange messages directly.
- The client software needs to set up a two-way connection prior to the HTTP request.
HTTP client/server interaction

HTTP client

Request

Response

HTTP server

Figure 2.1

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Computer Networks: Internet Introduction

18
Figure 2.2

Ephemeral Port #

Port 80

HTTP client

GET 80, #

HTTP server

#, 80 STATUS

TCP

TCP

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Computer Networks: Internet Introduction

19
1. The user clicks on a link to indicate which document is to be retrieved.

2. The browser must determine the address that contains the document. It does this by sending a query to its local name server.

3. Once the address is known the browser establishes a connection to the specified machine, usually a TCP connection. In order for the connection to be successful, the specified machine must be ready to accept TCP connections.

4. The browser runs a client version of HTTP, which issues a request specifying both the name of the document and the possible document formats it can handle.

5. The machine that contains the requested document runs a server version of HTTP. It reacts to the HTTP request by sending an HTTP response which contains the desired document in the appropriate format.

6. The TCP connection is then closed and the user may view the document.
Retrieving a document from the Web

1. User selects document
2. Network software of client locates the server host and establishes a two-way connection.
3. HTTP client sends message requesting document.
4. HTTP daemon listening on TCP port 80 interprets a message.
5. HTTP daemon send a result code and a description of the information that the client will receive.

GET /infocom/index.html HTTP 1.0

HTTP/1.1 200 OK
Server: Apache/1.3.23 (Unix)
Content-Length: 414
Content-Type: text-html
Retrieving a document from the Web

6. HTTP daemon reads the file and sends the requested file through the TCP port.

7. Text is displayed by client browser, which interprets the HTML format.

8. HTTP daemon disconnects the connection after the connection is idle for some timeout period.

<html>
<head>
<title>Infocom ’99</title>
The Future Now
…
DNS query and response

1. Application requests name to address translation.
2. Resolver composes query message.

3. Resolver send UDP datagram encapsulating the query message.
4. DNS server looks up address and prepares response.
5. DNS sends UDP datagram encapsulating the response message.

Header: OPCODE=SQUERY
Question:
QNAME= tesla.comm.toronto.edu.,
QCLASS=IN, QTYPE=A

HEADER: OPCODE=SQUERY,
RESPONSE AA
Question: QNAME=
Tesla.comm.toronto.edu.,
QCLASS=IN, QTYPE=A
Answer: telsa.cmm.toronto.edu.
86400 IN A 128.100.11.56