
1

Communication in Distributed
Systems

REK’s adaptation of
Tanenbaum’s

Distributed Systems
Chapter 2

Distributed Computing Systems 2

Communication Paradigms

! Using the Network Protocol Stack

! Remote Procedure Call Remote Procedure Call Remote Procedure Call Remote Procedure Call ---- RPC RPC RPC RPC

! Remote Object Invocation - Java Java Java Java
Remote Method InvocationRemote Method InvocationRemote Method InvocationRemote Method Invocation

! Message Queuing Services - SocketsSocketsSocketsSockets

! Stream-oriented Services

Distributed Computing Systems 3

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Network
Layer

Electrical and/or Optical Signals

Application A Application B

Data Link
Layer

Physical
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Communication Network

Figure 2.6Leon-Garcia & Widjaja: Communication Networks

Copyright ©2000 The McGraw Hill Companies

Network Stack - OSI Reference Model

Distributed Computing Systems 4

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Application A Application B
data

data

data

data

data

data

data

ah

ph

sh

th

nh

dh

bits

dt

Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication NetworksOSI Reference Model

Distributed Computing Systems 5

Normal operation of TCP Transactional TCPNormal operation of TCP Transactional TCPNormal operation of TCP Transactional TCPNormal operation of TCP Transactional TCP

TCP Connection Overhead

6

Remote Procedure Calls

RPC

Distributed Computing Systems 7

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before
the call to read.

b) The stack while the called procedure is active.

Count = read(fd, buf,bytes)

Note – call-by-value
and call-by-reference
parameters on the
stack.

Distributed Computing Systems 8

Remote Procedure Call

! RPC concept ::RPC concept ::RPC concept ::RPC concept :: to make a remote to make a remote to make a remote to make a remote
procedure call appear like a local procedure call appear like a local procedure call appear like a local procedure call appear like a local
procedure call.procedure call.procedure call.procedure call.

! The goal is to hide the details of the
network communication (namely, the
sending and receiving of messages).

! The calling procedure should not be
aware that the called procedure is
executing on a different machine.

Distributed Computing Systems 9

Remote Procedure Call

! When making a RPC:
! The calling environment is suspended.
! Procedure parameters are transferred across

the network to the environment where the
procedure is to execute.

! The procedure is executed there.
! When the procedure finishes, the results are

transferred back to the calling environment.
! Execution resumes as if returning from a

regular procedure call.

Distributed Computing Systems 10

RPC differs from OSI

! User does not open connection, read,
write, then close connection – client may
not even know they are using the
network.

! RPC may omitomitomitomit protocol layers for
efficiency. (e.g. diskless Sun workstations
will use RPC for every file access.)

! RPC is well-suited for client-server
interaction where the flow of control
alternates.

Distributed Computing Systems 11

RPC between
Client and Server

Distributed Computing Systems 12

RPC Steps

1. The client procedure calls a client stubclient stubclient stubclient stub
passing parameters in the normal way.

2. The client stub marshals the parameters,marshals the parameters,marshals the parameters,marshals the parameters,
builds the message, and calls the local OS.

3. The client's OS sends the message (using the (using the (using the (using the
transport layer)transport layer)transport layer)transport layer) to the remote OS.

4. The server remote OS gives transport layertransport layertransport layertransport layer
message to a server stubserver stubserver stubserver stub.

5. The server stub demarshalsdemarshalsdemarshalsdemarshals thethethethe parametersparametersparametersparameters
and calls the desired server routine.

Distributed Computing Systems 13

6. The server routine does work and returns result to
the server stub via normal procedures.

7. The server stub marshals the return valuesmarshals the return valuesmarshals the return valuesmarshals the return values into the
message and calls local OS.

8. The server OS (using the transport layer)(using the transport layer)(using the transport layer)(using the transport layer) sends the
message to the client's OS.

9. The client's OS gives the message to the client stub

10. The client stub demarshalsdemarshalsdemarshalsdemarshals the resultthe resultthe resultthe result, and
execution returns to the client.

RPC Steps

Distributed Computing Systems 14

RPC Steps

Distributed Computing Systems 15

Passing Value Parameters

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in

boxes indicate the address of each byte

Distributed Computing Systems 16

Marshaling Parameters

! Parameters must be marshaled into a
standard representation.

! Parameters consist of simple types (e.g.
integers) and compound types (e.g., C
structures).

! The type of each parameter must be
known to the modules doing the
conversion into standard representation.

Distributed Computing Systems 17

Marshaling Parameters

! Call-by-reference is not possible in
parameter passing.

! It can be “simulated” by copy-restore.
A copy of the referenced data
structure is sent to the server, and
upon return to the client stub the
client’s copy of the structure is
replaced with the structure modified
by the server.

Distributed Computing Systems 18

Marshaling Parameters

! However, in general marshaling
cannot handle the case of a pointer to
an arbitrary data structure such as a
complex graph.

Distributed Computing Systems 19

Parameter Specification
and Stub Generation

A procedure The corresponding message

The caller and the callee must agree
on the format of the message they
exchange, and they must follow the same
steps when it comes to passing complex
data structures.

Distributed Computing Systems 20

RPC Details

! An Interface Definition Language
(IDL) is used to specific the interface
that can be called by a client and
implemented by the server.

! All RPC-based middleware systems
offer an IDL to support application
development.

Distributed Computing Systems 21

Doors

The principle of using doors as IPC mechanism.

Distributed Computing Systems 22

Doors

! A Door is a generic name for a
procedure in the address space of a
server process that can be called by
processes colocated with the server.

! Doors require local OS support.

Distributed Computing Systems 23

Asynchronous RPC

a) The interconnection between client and server
in a traditional RPC

b) The interaction using asynchronous RPC

2-12

Distributed Computing Systems 24

Asynchronous RPC’s

A client and server interacting through two
asynchronous RPCs

