Communication in Distributed

!'_ Systems —Part 2

REK's adaptation of
Tanenbaum’s
Distributed Systems
Chapter 2

* Communication Paradigms

= Using the Network Protocol Stack
= Remote Procedure Call -

= Remote Object Invocation - Java
Remote Method Invocation

= Message Queuing Services - Sockets
s Stream-oriented Services

Distributed Computing Systems 2

!'_ Remote Object Invocation

Distributed Objects
Remote Method Invocation

Distributed Objects

i

= The idea of distributed objects Is an
extension of the concept of remote
procedure calls.

= In a system for distributed objects, the
unit of distribution is the object. That
IS, a client imports a “something”.

= “full blown” object-based distributed
sysems Include Corba and DCOM.

Distributed Computing Systems 4

Distributed Objects

i

= Key feature of an object:: it encapsulates
data, the state, and the operations on
those data, the methods.

= Methods are made available through an
Interface. The separation between
Interfaces and the objects implementing
these interfaces Is crucial for distributed
systems.

Distributed Computing Systems 5

Distributed Objects

Client machine Server machine
Object
Client Server A
‘ T State
Same
Client interface D D D< Method
| as object

invokes

a method i / Skeleton /—/—’* D

) I B [Interface
Prox invokes ‘ Skeleton
y same method

at object A
Client OS Server OS

N _/

Network \

Marshalled invocation
is passed across network

Common organization of a remote object with client-side proxy.

Distributed Computing Systems 6

Distributed Objects

= When a client binds to a distributed
object, an implementation of the object’s
Interface, a proxy, Is loaded into the
client’s address space.

= The proxy marshals method invocations
INto messages and unmarshals reply
messages to return the result of the
method invocation to the client.

e NTEC,
o N
II-,I Y l} 5)))
i Y & Distributed Computing Systems 7

Distributed Objects

= The actual object resides at a server.

= Incoming invocation requests are first passed
to a server stub, a skeleton, that unmarshals
them to proper method invocations at the
object’s Interface at the server.

= The skeleton also marshals replies and
forwards replies to the client-side proxy.

m A characteristic of most distributed objects iIs
that their state Is not distributed.

o TEC,
J:s-;_t'l {-
O Y2
ti II" v .E;} W
NI Distributed Computing Systems 8

Compile-time vs Run-time Objects

= The most obvious form of objects,
compile-time objects, are directly
related to language-level objects
supported by Java and C++.

= A class Is a description of an
abstract type in terms of a module
with data elements and operations
on that data.

Distributed Computing Systems

Compile-time vs Run-time Objects

= Using compile-time objects in distributed systems
makes it easier to build distributed applications.

= An object can be fully defined by means of its class
and the interfaces that the class implements.

= Compiling the class definition results in code that
allows it to instantiate Java objects.

= The interfaces can be compiled into client-side and
server-side stubs that permit Java objects to
Invoked by a remote machine.

Distributed Computing Systems 10

iCompile-time vs Run-time Objects

= Compile-time objects are dependent on
particular programming language.

= With run-time objects, the implementation Is
left “open” and this approach to object-
based distributed systems allows an
application to be constructed from objects
written in multiple languages.

= This scheme may use object adapters that
act as wrappers that give implementations
an object appearance.

™ l_". .l_ll .
Q ,;.,; 5/ Distributed Computing Systems 11

Binding a Client to an Object

= Unlike RPC systems, systems supporting distributed
objects usually support systemwide object
references that can be passed between processes
on different machines as parameters to method
Invocations.

= When a process holds an object reference, it must
first bind to the referenced object before invoking
any of its methods.

= Binding results in a proxy being placed in the
process’s address space, implementing an interface
containing the methods.

= The binding can be implicit or explicit.

Distributed Computing Systems 12

Binding a Client to an Object

(a) An example of implicit binding using only global
references.

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = .. // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(b) An example of explicit binding using global and local
references.

Distr_object objPref; //Declare a systemwide object reference
Local _object* obj_ptr; //Declare a pointer to local objects
obj_ref = ..; //nitialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

Distributed Computing Systems 13

Implementation of Object
References

= A simple object reference would include:

= The network address of the machine where the
actual object resides

= An endpoint identifying the server that manages
the object. [This corresponds to a local port
assigned by the server's OS]

= An indication of which object — an object number
assigned by the server.

= This scheme can use a location server to
keep track of the location of an object’s
server.

W\‘E;ﬂ WPI

O Y2

El EREyY 5

NS Distributed Computing Systems 14

Remote Method Invocation

= After a client Is bound to an object, It
can invoke the object’s method
through the proxy.

s Such a remote method invocation (RMI1)
IS similar to a RPC with respect to
marshaling and parameter passing.

= The difference is that RMI supports
systemwide object references.

Distributed Computing Systems 15

Remote Method Invocation

= An Interface definition language Is
used Iin RMI to specify the object’s
Interface.

= Static invocation implies using object-
based languages (e.g., Java) to
predefine interface definitions.

= Dynamic invocation permits composing
a method invocation at run-time.

..:;t.-"*"r_-.-
El EREyY 5
NS Distributed Computing Systems 16

Parameter Passing

Machine A Machine B
Local ‘ Locacl)el)bject J Remote object
ference L1 Remote o2
re —ad reference R1 « »

7 . i
- "
L Y - b
—l P y
- _— _f,-'_' \

Client code with
RMI to server at C

(proxy) New local !
reference [Copy of O1 J Ve
Remote _ \,4 ,/’// \
D@ﬁtﬁq \ggh ﬁ . ";R Copy of R1 to O2
parameters achie O Server code

{(method implementation)

The situation when passing an object by reference or by value.

Distributed Computing Systems 17

Java RMI

= Distributed objects have been integrated In
the Java language with a goal of a high
degree of distribution transparency.

= Java adopts remote objects as the only form
of distributed objects. /i.e., objects whose
state only resides on a single machine]

= Java allows each object to be constructed as a
monitor by declaring a method to be
synchronized.

QOITEC, X
&) WPI
O Y2
51:5_ R
S ST o~ } } }
NS Distributed Computing Systems 18

Java RMI

However there are problems with distributed
synchronization.

Thus, Java RMI restricts blocking on remote objects
only to the proxies.

This means remote objects cannot be protected
against simultaneous access from processes
operating on different proxies by using
synchronization methods.

Explicit distributed locking technigues must be used.

Distributed Computing Systems 19

Java Remote Object Invocation

.

= Any primitive or object type can be passed as
a parameter to an RMI provided the type can
be marshaled. [i.e, it must be serializable.]

= Platform dependent objects such as file
descriptors and sockets cannot be serialized.

= I[N Java RMI reference to a remote object is
explained on slide 14.

= A remote object is built from a server class
and a client class.

ANTEC,
as-;_t-l ‘7" WI
= O ‘a
Bl SRy E
N N Distributed Computing Systems 50

Java Remote Object Invocation

Proxies are serializable in Java.

This means proxies can be marshaled.

In actually an implementation handle is generated,
specifying which classes are needed to construct the
Proxy.

The implementation handle replaces the marshaled
code as part of a remote object reference.

This passing of proxies as parameters works only
because each process is executing the same Java
virtual machine.

Distributed Computing Systems 21

