
1

Communication in Distributed
Systems –Part 2

REK’s adaptation of
Tanenbaum’s

Distributed Systems
Chapter 2

Distributed Computing Systems 2

Communication Paradigms

! Using the Network Protocol Stack

! Remote Procedure Call - RPC

! Remote Object Invocation Remote Object Invocation Remote Object Invocation Remote Object Invocation ---- Java Java Java Java
Remote Method InvocationRemote Method InvocationRemote Method InvocationRemote Method Invocation

! Message Queuing Services - SocketsSocketsSocketsSockets

! Stream-oriented Services

3

Remote Object Invocation

Distributed Objects
Remote Method Invocation

Distributed Computing Systems 4

Distributed Objects

! The idea of distributed objects is an
extension of the concept of remote
procedure calls.

! In a system for distributed objects, the
unit of distribution is the object. That
is, a client imports a “something”.

! “full blown” object-based distributed
sysems include Corba and DCOM.

Distributed Computing Systems 5

Distributed Objects

! Key feature of an object:: it encapsulates
data, the state, and the operations on
those data, the methods.

! Methods are made available through an
interface. The separation between
interfaces and the objects implementing
these interfaces is crucial for distributed
systems.

Distributed Computing Systems 6

Distributed Objects

Common organization of a remote object with client-side proxy.

Distributed Computing Systems 7

Distributed Objects

! When a client binds to a distributed
object, an implementation of the object’s
interface, a proxy, is loaded into the
client’s address space.

! The proxy marshals method invocations
into messages and unmarshals reply
messages to return the result of the
method invocation to the client.

Distributed Computing Systems 8

Distributed Objects

! The actual object resides at a server.
! Incoming invocation requests are first passed

to a server stub, a skeleton, that unmarshals
them to proper method invocations at the
object’s interface at the server.

! The skeleton also marshals replies and
forwards replies to the client-side proxy.

! A characteristic of most distributed objects is
that their state is not distributed.

Distributed Computing Systems 9

Compile-time vs Run-time Objects

! The most obvious form of objects,
compile-time objects, are directly
related to language-level objects
supported by Java and C++.

! A class is a description of an
abstract type in terms of a module
with data elements and operations
on that data.

Distributed Computing Systems 10

Compile-time vs Run-time Objects

! Using compile-time objects in distributed systems
makes it easier to build distributed applications.

! An object can be fully defined by means of its class
and the interfaces that the class implements.

! Compiling the class definition results in code that
allows it to instantiate Java objects.

! The interfaces can be compiled into client-side and
server-side stubs that permit Java objects to
invoked by a remote machine.

Distributed Computing Systems 11

Compile-time vs Run-time Objects

! Compile-time objects are dependent on
particular programming language.

! With run-time objects, the implementation is
left “open” and this approach to object-
based distributed systems allows an
application to be constructed from objects
written in multiple languages.

! This scheme may use object adapters that
act as wrappers that give implementations
an object appearance.

Distributed Computing Systems 12

Binding a Client to an Object

! Unlike RPC systems, systems supporting distributed
objects usually support systemwide object
references that can be passed between processes
on different machines as parameters to method
invocations.

! When a process holds an object reference, it must
first bind to the referenced object before invoking
any of its methods.

! Binding results in a proxy being placed in the
process’s address space, implementing an interface
containing the methods.

! The binding can be implicit or explicit.

Distributed Computing Systems 13

Binding a Client to an Object

(a) An example of implicit binding using only global
references.

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(b) An example of explicit binding using global and local
references.

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

Distributed Computing Systems 14

Implementation of Object
References

! A simple object reference would include:
! The network address of the machine where the

actual object resides
! An endpoint identifying the server that manages

the object. [This corresponds to a local port
assigned by the server’s OS.]

! An indication of which object – an object number
assigned by the server.

! This scheme can use a location server to
keep track of the location of an object’s
server.

Distributed Computing Systems 15

Remote Method Invocation

! After a client is bound to an object, it
can invoke the object’s method
through the proxy.

! Such a remote method invocation (RMI)
is similar to a RPC with respect to
marshaling and parameter passing.

! The difference is that RMI supports
systemwide object references.

Distributed Computing Systems 16

Remote Method Invocation

! An interface definition language is
used in RMI to specify the object’s
interface.

! Static invocation implies using object-
based languages (e.g., Java) to
predefine interface definitions.

! Dynamic invocation permits composing
a method invocation at run-time.

Distributed Computing Systems 17

Parameter Passing

The situation when passing an object by reference or by value.

Distributed Computing Systems 18

Java RMI

! Distributed objects have been integrated in
the Java language with a goal of a high
degree of distribution transparency.

! Java adopts remote objects as the only form
of distributed objects. [i.e., objects whose
state only resides on a single machine]

! Java allows each object to be constructed as a
monitor by declaring a method to be
synchronized.

Distributed Computing Systems 19

Java RMI

! However there are problems with distributed
synchronization.

! Thus, Java RMI restricts blocking on remote objects
only to the proxies.

! This means remote objects cannotcannotcannotcannot be protected
against simultaneous access from processes
operating on different proxies by using
synchronization methods.

! Explicit distributed locking techniques must be used.

Distributed Computing Systems 20

Java Remote Object Invocation

! Any primitive or object type can be passed as
a parameter to an RMI provided the type can
be marshaled. [i.e, it must be serializable.]

! Platform dependent objects such as file
descriptors and sockets cannot be serialized.

! In Java RMI reference to a remote object is
explained on slide 14.

! A remote object is built from a server class
and a client class.

Distributed Computing Systems 21

Java Remote Object Invocation

! Proxies are serializable in Java.
! This means proxies can be marshaled.
! In actually an implementation handle is generated,

specifying which classes are needed to construct the
proxy.

! The implementation handle replaces the marshaled
code as part of a remote object reference.

! This passing of proxies as parameters works only
because each process is executing the same Java
virtual machine.

