
1

The Effectiveness of Request
Redirection on CDN
Robustness

Limin Wang, Vivek Pai and Larry
Peterson

Presented by:
Eric Leshay
Ian McBride

Kai Rasmussen

2

Outline
! Introduction
! Redirection Strategies
! Methodology
! Normal Load Results
! Flash Crowd Results
! Conclusion

3

CDNs
! To achieve better performance, networks can

be built using redundant resources
! Content Distribution Networks (CDN)

! Improves -
! Response Time

! Cumulative latencies
! System Throughput

! Average number of requests satisfied every second

4

CDN Distribution Factors
! Network Proximity

! Minimizes response time
! Balance System Loads

! Improves system throughput
! Locality

! Select server with page already in cache
! Overall improvements

5

CDN Model
! Server Surrogate

! Caches page normally kept on a set of
backend servers

! Uses replication to improve response time
and system throughput

! Uses request redirectors
! Transparent system to get user to a file

without user knowing about any replication

6

Redirector Mechanisms
! DNS server augmentation

! Site Level
! Caching problems avoided with short

expiration times
! Server Redirection

! HTTP Redirect Response
! Adds extra round trip time
! Consumes bandwidth

7

Redirector Mechanisms
! Router or proxy rerouting

! Rewrite outbound request
! HTTP Redirect
! Proxies on edge of server

! Approximate load Information
! Identifiable client population

8

Hashing Schemes
! Maps URLs to range of values
! Modulo Hashing

! URL is hashed, n % (# of servers)
! Must change modulus as number of servers

change
! Consistent Hashing

! URL and names of servers hashed in long circular
list

! URL assigned to closest server in list

9

Hashing Schemes
! Highest Random Weight

! Hashes URL and server names by random
weights, and sorts result

! List is traversed to find appropriate server
! More computation than consistent hashing

10

Request Redirection
Strategies

! Random
! Request randomly sent to a server surrogate
! ‘baseline’ to determine reasonable performance

! Static Server Set
! Assigns a fixed number of server replicas to each URL
! Improves Locality

! Load-Aware Static Server Set
! Redirects based on approximated load information

! Dynamic Server Set
! Adjusts number of replicas for better locality and load

balancing
! Network Proximity

! Favors shorter network paths

11

Static Server Set
! Replicated Consistent Hashing (R-CHash)

! Number of replicas is fixed but configurable
! URL and replicas hashed to circular space
! Redirector assigns a request to a replica for the

URL
! Replicated Highest Random Weight (R-HRW)

! Uses HRW to hash URL and replicas
! Replicas for each URL decided by top N servers

from the ordered weighted list

12

Load-Aware Static Server Set
! Redirectors maintain estimates of

server load
! Finds least loaded server for redirection
! Load-Aware counter parts of R-CHash

and R-HRW
! LR-CHash
! LR-HRW

13

Dynamic Server Set
! Dynamically adjusts the number of

replicas
! Introduces two new algorithms

! Coarse Dynamic Replication (CDR)
! Fine Dynamic Replication (FDR)

! Factors both load and locality into
decision combined with a dynamic set
of replicas

14

Coarse Dynamic Replication
! Uses HRW hashing to create an

ordered list of servers
! Coarse-grained load information is used

to select first non-busy server
! Number of active communications used to

approximate load level
! Can be combined with response latency,

bandwidth consumption and other factors

15

CDR Code
find_server(url, S) {

foreach server si in server set S,
Weighti = hash(url,address(si));

Sort weight;
foreach server sj in decreasing order of weightj {

If satisfy_load_criteria(sj) then {
targetServer = sj;
Stop search;

}
}
If targetServer is not valid then

targetServer = server with highest weight;
Route request url to targetServer;

}

16

Fine Dynamic Replication
! Uses URL popularity to decrease

unnecessary replication
! Introduces a walk length to indicate the

number of servers that should be searched
! If all servers are busy the walk length is

increased
! Keep track of modified time. Walk length is

decreased after a long time unmodified

17

FDR Code 1
Find_server(url, S){

walk_entry = walkLenHash(url);
w_len = walk_entry.length;
foreach server si in server set S,

weighti = hash(url,address(si));
sort weight;
scandidate = least-loaded server of top w_len servers;
if satisfy_load_criteria(scandidate) then {

targetServer = scandidate;
if (w_len > 1
&& (timenow() - walk_entry.lastUpd > chgThresh)

walk.entry.length--;
}

18

FDR Code 2
else {

foreach rest server sj in decreasing weight order {
if satisfy_load_criteria(sj) then {

targetServer = sj;
stop search;

}
}
walk_entry.length = actual search steps;

}
if walk_entry.length changed then

walk_entry.lastUpd = timenow();
if targetServer is not valid then

targetServer = server with highest weight;
route request url to targetServer;

}

19

Network Proximity

! Map addresses to a geographic region.
Select servers within a specific region
! Find closer servers

! Use ping and traceroute to measure
topological location

! Three Network Proximity strategy
! NP-FDR
! NPR-CHash
! NPLR-CHash

Methodology: Simulation
! Network & OS/server combo

! NS-2: packet-level simulator
! Tests TCP implementations

! Logsim: server cluster simulator
! Simulates CPU processing, memory usage, and disk access

Methodology: Network
Topology
! NSFNET backbone

network T3 topology
! server surrogates
! client hosts
! regional routers
! backbone routers

(with location)

! 64 servers
! 1,000 client hosts
! 1,100 nodes

Results: Normal Load
! Charts shown are for 64 server case.
! Optimal Static Replication

! Performance R-CHash and R-HRW
influenced by number of replicas.

! For 2 to 64 replicas:
! Increasing replicas help load balance; improves

throughput
! Too many replicas will hinder throughput, as

replica working set causes more server disk
activity.

! 10 replicas determined to be optimal number.

23

Results: Normal Load:
Capacity

•R-CHash 119%
better than
random.
•R-HRW 99%
better than
random.
•LR-CHash and
LR-HRW 173%
better than
random.
•CDR and FDR
250% better
than random.

Results: Normal Load: Server
Resource Utilization

•Hash schemes
utilize disk more,
processor less.

•Dynamic
schemes (CDR
and FDR) utilize
processor more,
disk less.

“With faster simulated machines, we expect the gap between the
dynamic schemes and the others to grow even larger.”

Results: Normal Load: Latency
•Dynamic
schemes (CDR,
FDR) similarly
outperform hash
schemes at low
response loads.

•Dynamic and
static schemes
serve large files
roughly the
same, since large
files are
replicated less
under CDR/FDR.

Results: Normal Load: Latency
•FDR
outperforms
CDR at very high
response rates
for files of
median sizes.

•Small files are
served at
roughly the same
rate by both
schemes. Large
files still suffer
from under –
replication.

27

Results: Normal Load: Scalability
! Experiments repeated for 8 to 128 servers.

• Linear growth
meaning systems
scale well.
• Server router
to backbone
router link
bandwidth
doubled for 128
server case.

28

Behavior under Flash Crowds

! Simulate the performance of CDNs
under a flash crowd or DDoS attack

! Measured performance by:
! Capacity – requests/second
! Latency – response time in seconds
! Scalability – requests/second

29

Flash Crowd Setup
! System Capacity – requests/second, latency

! 1000 clients – 25% intensive requesters
! Intensive requesters download a URL of 6kb from

a predetermined list over and over
! Clusters of 64 servers

! Scalability - requests/seconds
! Varying cluster size from 32 – 128 servers

30

System Capacity – Flash Crowd

" FDR's benefit
has grown to
91% from 60%
over R-HRW
and LR-CHash
during the flash
crowd scenario

" Random has the worst latency, LR-CHash and LR-HRW have
the best latency.

" In a direct comparison of FDR and CDR, FDR proves to
have the best latency

32

Scalability Results – Flash Crowd

! All the
algorithms
scale
linearly

! Similar
results to
the trial
under
normal load

33

More Flash Crowd Tests
! Flash Crowds setup

! 1 hot URL of 1kb
! 10 hot URLs of 6kb

! Test parameters
! Vary intensive requesters from 10% - 80%
! Vary cluster size from 32 to 64 servers
! Measured requests/second

! FDR and CDR are able to adapt to flash crowds
! All other algorithms perform worse than random

during the flash crowd
! Tested with 1 hot URL and 10 hot URLs

35

Proximity Comparison

" Proximity can benefit latency, but may hurt capacity.
This is the case with NPLR-CHash

36

Heterogeneity

! Random and R-
CHash cannot
determine
speed of links

! LR-CHash and
FDR are able to
assign requests
fairly between
slow and fast
links

37

Large File Effects

! Threshold set where files > 530kb sent to a separate server

38

Conclusion
! Improved Redirect Algorithms lead to

more robust CDN systems
! FDR allows a 60-91% greater load than

previously published systems
! FDR provides a mechanism for

defending against flash crowds or
Distributed Denial of Service Attacks

39

Questions/Discussion

