The Effectiveness of Request
Redirection on CDN

E Robustness

Limin Wang, Vivek Pal and Larry
Peterson

Presented by:
Eric Leshay
lan McBride

Kal Rasmussen

Outline

= Introduction

= Redirection Strategies
= Methodology

= Normal Load Results
= Flash Crowd Results
= Conclusion

= To achieve better performance, networks can
be built using redundant resources

= Content Distribution Networks (CDN)

= Improves -
= Response Time
=« Cumulative latencies

= System Throughput
= Average number of requests satisfied every second

: | ‘ CDN Distribution Factors

= Network Proximity
= Minimizes response time

= Balance System Loads
= Improves system throughput

= Locality
= Select server with page already in cache
= Overall improvements

«.. CDN Model

= Server Surrogate

= Caches page normally kept on a set of
backend servers

= Uses replication to improve response time
and system throughput

= Uses request redirectors

= Transparent system to get user to a file
without user knowing about any replication

: | I Redirector Mechanisms

= DNS server augmentation
= Site Level

= Caching problems avoided with short
expiration times

s Server Redirection

= HTTP Redirect Response
= Adds extra round trip time
« Consumes bandwidth

Redirector Mechanisms

= Router or proxy rerouting

Rewrite outbound request
HTTP Redirect

Proxies on edge of server
= Approximate load Information
« |dentifiable client population

Hashing Schemes

= Maps URLSs to range of values

= Modulo Hashing
= URL is hashed, n % (# of servers)
= Must change modulus as number of servers
change
= Consistent Hashing
= URL and names of servers hashed in long circular
list
= URL assigned to closest server in list

Hashing Schemes

= Highest Random Weight

= Hashes URL and server names by random
welights, and sorts result

= List Is traversed to find appropriate server
= More computation than consistent hashing

Reguest Redirection
Strategies

= Random
= Request randomly sent to a server surrogate
= ‘baseline’ to determine reasonable performance
Static Server Set
= Assigns a fixed number of server replicas to each URL
= Improves Locality
= Load-Aware Static Server Set
= Redirects based on approximated load information
= Dynamic Server Set

= Adjusts number of replicas for better locality and load
balancing

Network Proximity
= Favors shorter network paths

10

: |I Static Server Set

= Replicated Consistent Hashing (R-CHash)
= Number of replicas is fixed but configurable
= URL and replicas hashed to circular space

= Redirector assigns a request to a replica for the
URL

= Replicated Highest Random Weight (R-HRW)
= Uses HRW to hash URL and replicas

= Replicas for each URL decided by top N servers
from the ordered weighted list

11

* Load-Aware Static Server Set

s Redirectors maintain estimates of

server load
s FInds least loaded server for redirection
= Load-Aware counter parts of R-CHash

ang
= L

R-HRW
R-CHash

s L

R-HRW

12

: | ‘ Dynamic Server Set

= Dynamically adjusts the number of
replicas

= Introduces two new algorithms
=« Coarse Dynamic Replication (CDR)
= Fine Dynamic Replication (FDR)

= Factors both load and locality into

decision combined with a dynamic set
of replicas

13

$ Coarse Dynamic Replication

= Uses HRW hashing to create an
ordered list of servers

= Coarse-grained load information Is used
to select first non-busy server

= Number of active communications used to
approximate load level

=« Can be combined with response latency,
bandwidth consumption and other factors

14

CDR Code

find_server(url, S) {
foreach server s, in server set S,
Weight, = hash(url,address(s)));
Sort weight;
foreach server s; in decreasing order of weight; {
If satisfy_load_criteria(s;) then {
targetServer = s;;
Stop search;

}
}

If targetServer is not valid then
targetServer = server with highest weight;
Route request url to targetServer,

15

1|I Fine Dynamic Replication

= Uses URL popularity to decrease
unnecessary replication

= Introduces a walk length to indicate the
number of servers that should be searched

= If all servers are busy the walk length is
Increased

= Keep track of modified time. Walk length is
decreased after a long time unmodified

16

FDR Code 1

Find_server(url, S¥{
walk_entry = walkLenHash(url);
w_len = walk_entry.length;
foreach server s, in server set S,
weight, = hash(url,address(s;));
sort weight;
S.andidate — l€ASt-loaded server of top w_len servers;
If satisfy_load_criteria(S,,ngigate) theN {
targetServer = s
If (w_len>1
&& (timenow() - walk_entry.lastUpd > chgThresh)
walk.entry.length--;

candidate?

17

FDR Code 2

else {
foreach rest server s; in decreasing weight order {
If satisfy_load_criteria(s;) then {
targetServer = s;;
stop search;
}
}
walk _entry.length = actual search steps;
}
If walk_entry.length changed then
walk_entry.lastUpd = timenow();
If targetServer is not valid then
targetServer = server with highest weight;
route request url to targetServer;

18

$ Network Proximity

= Map addresses to a geographic region.
Select servers within a specific region

= Find closer servers

= Use ping and traceroute to measure
topological location

= Three Network Proximity strategy
= NP-FDR
= NPR-CHash
= NPLR-CHash

19

Methodology: Simulation

s Network & OS/server combo

= NS-2: packet-level simulator
= Tests TCP implementations
= Logsim: server cluster simulator
= Simulates CPU processing, memory usage, and disk access

|J'|L.|1.|1. i '-.-Ll"-".l tml:}l.

muore time m:f:d:r.i

; done
F]’[]
1'IL"|"|' ,
regs | [Req
| — 1
cachs misse ' JI |..;|- “;:: .
L adive holding
dﬁ.l'. U_’ | [. v quene tueue
read finished '
Mode Absuacuon

Figure 3: Logsim Simulator

Methodology: Network
Topology

NSFNET backbone
network T3 topology

® Server surrogates
< client hosts
@ regional routers

(w backbone routers
(with location)

64 servers
1,000 client hosts
1,100 nodes

. ("‘-';E 1 o
4.2 B2

Figure 4: Network Topology

Results: Normal Load

s Charts shown are for 64 server case.

= Optimal Static Replication

« Performance R-CHash and R-HRW
iInfluenced by number of replicas.

= For 2 to 64 replicas:

= Increasing replicas help load balance; improves
throughput

= Too many replicas will hinder throughput, as
replica working set causes more server disk
activity.

= 10 replicas determined to be optimal number.

Results: Normal Load:
Capacity

*R-CHash 119%
better than

40000 random.
3 sasy | *R-HRW 99%
-= | better than
E':mm random.
E - , 7l | °LR-CHash and
B il I i | LR-HRW 173%
. 20000) e B better than
S e pE e random.
o I *CDR and FDR
s g’y Rl v R B i 250% better
é & ‘ﬁ'm m‘;; %ﬁ than random.
o Fo -] e] ;

Random R-CHash R-HRW LR-CHssh LR-HEW CDR
Schemes

23

Results: Normal Load: Server
Resource Utilization

“With faster simulated machines, we expect the gap between the
dynamic schemes and the others to grow even larger.”

eHash schemes
utilize disk more,
processor less.

eDynamic
schemes (CDR
and FDR) utilize
Processor more,
disk less.

Utilization | CPU (%) DISK (%)
Scheme | Mean | Stddev Mean | Stddev
| Random | 21.03 .36 | 100.00 0.00
R-CHash 57.88 18.36 | 99.15 .89
R-HRW 47 88 15.33 | 99.74 1.26
LR-CHash | 59.48 18.85 | D7.83 12.51
LR-HRW 58.43 16.56 | 99.00 5.94
CDR 90.07 11.78 | 36.10 | 25.18
FDR 03,806 T.58 3396 20,38
| FDR-Global | 91.93 11.81 1760 | 1543

Table 2: Server Resource Utilization at Overload

Results: Normal Load: Latency

100
80 1
80
0
60
50 1
40
30 F
20 |
10T

Cumulative Percentage of Responses

Response Latency (seconds) in Log Scale

(a) Random’s limit: 9,300 reqg/s

eDynamic
schemes (CDR,
FDR) similarly
outperform hash
schemes at low
response loads.

eDynamic and
static schemes
serve large files
roughly the
same, since large
files are
replicated less
under CDR/FDR.

Results: Normal Load: Latency

w100

Lok

2 a0

% Eﬂ-

3

i

o

£ 50

E 40

® a0

wm 20

sl

§ 10
D i " F | "
0.1 1 10 100

Response Latency (seconds) in Log Scale

(d) CDR's mit: 32,582 reqg/s

FDR
outperforms
CDR at very high
response rates
for files of
median sizes.

Small files are
served at
roughly the same
rate by both
schemes. Large
Tiles still suffer
from under -
replication.

Results: Normal Load: Scalabllity

= EXxperiments repeated for 8 to 128 servers.

BOOOO [y

S
COR —

70000 b LAHAW o
LAR-CHash -

| RHRW e
BO000 I g.cHash -3¢
Aandorm -

SO000

Capacity (Requesis Per Second)
ha
g £ 3
L] L []

10000 F

B e T e

H D0 e T ——

Mumber of Servers

Figure 7: System Scalability under Normal Load

® Linear growth
meaning systems
scale well.

e Server router
to backbone
router link
bandwidth
doubled for 128
server case.

27

* Behavior under Flash Crowds

= Simulate the performance of CDNSs
under a flash crowd or DDo0S attack

= Measured performance by:

=« Capacity — requests/second
= Latency — response time in seconds
= Scalability — requests/second

28

Flash Crowd Setup

= System Capacity — requests/second, latency
= 1000 clients — 25% intensive requesters

= Intensive requesters download a URL of 6kb from
a predetermined list over and over

= Clusters of 64 servers

= Scalability - requests/seconds
= Varying cluster size from 32 — 128 servers

29

System Capacity — Flash Crowd

= FDR's benefit
has grown to

91% from 60%
over R-HRW

and LR-CHash
during the flash
crowd scenario

30

= Random has the worst latency, LR-CHash and LR-HRW have
the best latency.
100

Cumulative Percentage of Responses

* In a direct comparison of FDR and CDR, FDR proves to
have the best latency

Scalability Results — Flash Crowd

s Allthe
algorithms
scale
linearly

s Similar
results to
the trial
under
normal load

32

: | ‘ More Flash Crowd Tests

= Flash Crowds setup
= 1 hot URL of 1kb
= 10 hot URLSs of 6kb

= | est parameters
= Vary intensive requesters from 10% - 80%

= Vary cluster size from 32 to 64 servers
= Measured requests/second

33

= FDR and CDR are able to adapt to flash crowds

= All other algorithms perform worse than random
during the flash crowd

s [ested with 1 hot URL and 10 hot URLs

'\.-J il
- - -
--."' «
-‘%‘

Capanity {(Hequests Per Sesond]

L EE

- T]
.__..a-- ﬁ--.,-':_%.'.':r—_ 7_,___:______._&;
o

Proximity Comparison

Table 7: Prosmity's Impact on Eesponse Latency under Flash Crowds. B -- Mean, ¢ -- Standard Dewation.

Eeq Eate 11,235 regis 14,400 ragis 30,000 reg/is 34,023 regis
Latency Bo50% |90% | o | B 50% |90% | o | B |50% |90% | o | M 50% 20% | o
Fandom 237|064 857 525

WNPE-CHash |061 042115176 063 041 108 234

FE-CHash (073033145 210 /073|052 |1.38 (250

WPLE-CHash (0.53 |0.36 |0.90 |1.75 |0.55 035|091 |2.29 | 1.2% (061 265 394

LE-CHash |062 045115170 (064 044 1,13 1256 (090|049 1173344

NP-FDE (070|050 145 163|066 |045 134 (163081 047 164255 /09%|051]1.92/|3.26
FTE 1.22 1055 181 271|107 | 054 | 167|547 | 1.60 (066|349 (550 1.84 |0.778 |4.15 |6.31

= Proximity can benefit latency, but may hurt capacity.
Thisisthe case with NPLR-CHash

35

Heterogeneity

Table 8: Capacity (reqs/sec) wath Heterogeneous Server

s Random and R- Bandwidth,

CHash cannot

determine Portion of Slower Links

speed of links

Eedirection Formal Load Flash Crowds
« LR-CHash and Schemes | 0% | 10% | 30% | 0% | 10% 30%
FDR are able to Randewn | 9300 2010 201011235 | 2449 8449
assign requests
fairly between R-CHash 20411 7471 747119311 7110 7110
ﬁlﬁg and fast LR-CHash | 25407 | 23657 19421 31000 | 26703 | 22547
FOR 133237 131000 | 25407 | 37827 | 34933 | 29496

36

Large File Effects

Table 9: Eesponse Latency with Special Large File Handhing, Mormal Load. B -- Mean, o -- Standard Dewation

Eeq Rate 0,300 regis 18478 regis 25,407 regis 32,582 regls

Latency | B |50% |90% | o | B |50% |90% | o | B |50% 90% | o | B |50% 90% | o

LE-CHash (068 (044 | 1.17 |250 (087|051 | 1.82 (2774 [1.1% 060 247|373

LE-HEW (068 044 1118 |2.50 10301051 |1.8% (313 |1.27 064|264 |576

CDE. |1.16 (052 | 147|596 | 1.35 |0.55 | 1.75 |6.63 [1.86 |0.63 |4.4% 1662|237 112|519 |721

CDE-T-E (078 |0.52 11,43 | 2777|0776 [052 (140 1280 [1.05 1057 |1.50 |53.06 1558|034 1301 355

CDE-T-5 (074 1052|143 (217|072 (052 | 1.58 |244 | 1.01 056 |1.95 | 2.26 | 1.535 068 | 569 |4 18

FDE 110|052 | 1.4 1545 |1.35 054 1164|670 | 1.87 |0.62 (345 678 |2.22 |07 |4.88 |7 12

FDE-T-E |0.78 |0.52 | 1.43 | 2777|0775 (052|140 (282 |1.01 057 |1.67 |2.88 | 1.3%|0777 282 | 368

FDE-T-5 (074 1052|143 (217|072 |052 | 157|255 0.9 056 |1.84 295 141 063|288 |5588

» Threshold set where files > 530kb sent to a separate server

37

Conclusion

= Improved Redirect Algorithms lead to
more robust CDN systems

= FDR allows a 60-91% greater load than
previously published systems

= FDR provides a mechanism for
defending against flash crowds or
Distributed Denial of Service Attacks

38

Questions/Discussion

39

