
1

Aspects of Networking in
Multiplayer Computer Games

J. Smed, T. Kaukoranta and H. Hakonen

The Electronic Library
Volume 20, Number 2, Pages 87-97

2002

Introduction

• Internet + wireless making multiplayer
computer games (MCGs) more popular

• Commercial computer games increasingly
having mutiplayer option. With servers:
– Electronic Arts – Ultima Online
– Blizzard – Battle.net
– Microsoft’s – MSN Gaming Zone

• Consoles, too (PS2, Xbox)
• Wireless devices, too (Nokia NGage)

Shared Space Technologies

(MCG’s)

Other VR Research Efforts
• Distributed Interactive Simulations (DIS)

– Protocol (IEEE), architectures …
– Ex: flight simulation
– Large scale, spread out, many users

• Distributed Virtual Environments (DVEs)
– Immersive, technology oriented
– Ex: “Caves”
– Local, few users

• Computer Supported Cooperative Work (CSCW)
– Focus on collaboration
– Ex: 3D editors

• And MCGs are similar, yet not discussed in scientific
literature Hence, this paper seeks to rectify

Outline

• Introduction (done)
• Networking Resources (next)
• Distribution Concepts
• Scalability
• Security and Cheating
• Conclusions

Network Resources
• Distributed simulations face three

resource limitations
– Network bandwidth
– Network latency
– Host processing power (to handle network)

• Physical restrictions that the system
cannot overcome
– Must be considered in the design of the

application
• (More on each, next)

2

Bandwidth (Bitrate)
• Data sent/received per time
• LAN – 10 Mbps to 10 Gbps

– Limited size and scope
• WANs – tens of kbps from modems, to 1.5

Mbps (T1, broadband), to 55 Mbps (T3)
– Potentially enormous, Global in scope

• Number of users, size and frequency of
messages determines bitrate use

• As does transmission technique (next slide)

Transmission Techniques

• (a) Unicast, one send and one get
– Wastes bandwidth when path shared

• (c) Broadcast, one send and all get
– Perhaps ok for LAN
– Wastes bandwidth when most don’t need

• (b) Multicast, one send and only subscribed get
– Current Internet does not support
– Multicast overlay networks

Network Latency
• Delay when message sent until received

– Variation (jitter) also matters
• Cannot be totally eliminated

– Speed of light propagation yields 25-30 ms across
Atlantic

– With routing and queuing, usually 80 ms
• Application tolerances:

– File download – minutes
– Web page download – up to 10 seconds
– Interactive audio – 100s of ms

• MCG latencies tolerance depends upon game
– First-Person Shooters – 100s of ms
– Real-Time Strategy – up to 1 second [SGB+03]
– Other games

Computational Power

• Processing to send/receive packets
• Most devices powerful enough for raw

sending
– Can saturate LAN

• Rather, application must process state in
each packet

• Especially critical on resource-constrained
devices
– I.e.- hand-held console, cell phone, PDA,

Outline

• Introduction (done)
• Networking Resources (done)
• Distribution Concepts (next)
• Scalability
• Security and Cheating
• Conclusions

Distribution Concepts

• Cannot do much about above resource
limitations

• Should tackle problems at higher level
• Choose architectures for

– Communication
– Data
– Control

• Plus, compensatory techniques to relax
requirements

3

Communication Architectures
Split-screen

Console
- Limited
players

All peers equal
-Easy to
extend

-Doesn’t scale
(LAN only)

One node
server

- Clients only
to server

-Server may
be bottleneck

Server pool
-Improved
scalability

-More complex

Data and Control Architectures

• Want consistency
– Same state on each node
– Needs tightly coupled, low latency, small

nodes
• Want responsiveness

– More computation locally to reduce network
– Loosely coupled

• In general, cannot do both. Tradeoffs.

“Relay” Architecture Abstraction

• Want control to propagate quickly so can update
data (responsiveness)

• Want to reflect same data on all nodes
(consistency)

Relay Architecture Choices

(Example: Dumb terminal,
send and wait for response)

(Example: Smart terminal,
send and echo)

MCG Architectures
• Centralized

– Use only two-way relay (no short-circuit)
– One node holds data so view is consistent at

all times
– Lacks responsiveness

• Distributed and Replicated
– Allow short-circuit relay
– Replicated has copies, used when

predictable (ie- non-player characters)
– Distributed has local node only, used when

unpredictable (ie- players)

Compensatory Techniques

• Architectures alone not enough
• Design to compensate for residual
• Techniques:

– Message aggregation
– Interest management
– Dead reckoning

(next)

4

Message Aggregation

• Combine multiple messages in one packet to
reduce network overhead

• Examples
– Multiple user commands to server (move and

shoot)
– Multiple users command to clients (player

A’s and player B’s actions to player C)

Interest Management – Auras (1)

• Nodes express area of interest to them
– Do not get messages for outside areas

- Only circle sent even if
world is larger.
- But implementation
complex

Interest Management- Auras (2)

- Divide into cells (or hexes).
- Easier, but less discriminating

- Compute bounding box
- Relatively easy, precise

• Always symmetric – both receive
• But can sub-divide – Focus and Nimbus

Interest Management- Focus and
Nimbus

-nimbus must intersect with focus to receive
-Example above: hider has smaller nimbus, so seeker
cannot see, while hider can see seeker since
Seeker’s nimbus intersects hider’s focus

Dead Reckoning

• When prediction differs, get “warping” or
“rubber-banding” effect

(predicted position)

(actual position)

(“warp”)

• Based on ocean navigation techniques
• Predict position based on last known position plus

direction
– Can also only send updates when deviates past a

threshold

Outline

• Introduction (done)
• Networking Resources (done)
• Distribution Concepts (done)
• Scalability (next)
• Security and Cheating
• Conclusions

5

Scalability

• Ability to adapt to resource changes
• Example:

– Expand to varying number of players
– Allocate non-player computation among

nodes
• Need hardware parallelism that enables

software concurrency

Serial and Parallel Execution
• Given time T(1), speedup with n

nodes

• Part of T(1) is serializable, part is parallel
• Ts + Tp= T(1) and α = Ts/(Ts + Tp)

• If serialized optimally: (Amdahls’ law)

•If Ts = 0, everything parallelizable but then no communication
(ex: players at own console with no interaction)

•If Tp = 0, then turn based
•Between are MCGs which have some of both

Serial and Parallel MCGs

Separate games

Turn-based
games

Interactive
games

Communication Capacity
• Scalability limited by communication

requirements of chosen architecture

(Multicasting)

• Can consider pool of m servers with n clients
divided evenly amongst them
• Servers in hierarchy have root as bottleneck
• In order not to increase with n, must have clients
not aware of other clients (interest management) and
do message aggregation

Outline

• Introduction (done)
• Networking Resources (done)
• Distribution Concepts (done)
• Scalability (done)
• Security and Cheating (next)
• Conclusions

Security and Cheating

• Unique to games
– Other multi-person applications don’t have
– In DIS, military not public and considered

trustworthy
• Cheaters want:

– Vandalism – create havoc (relatively few)
– Dominance – gain advantage (more)

6

Packet and Traffic Tampering
• Reflex augmentation - enhance cheater’s

reactions
– Example: aiming proxy monitors opponents

movement packets, when cheater fires,
improve aim

• Packet interception – prevent some packets
from reaching cheater
– Example: suppress damage packets, so

cheater is invulnerable
• Packet replay – repeat event over for

added advantage
– Example: multiple bullets or rockets if

otherwise limited

Preventing Packet Tampering

• Cheaters figure out by changing bytes and
observing effects
– Prevent by MD5 checksums (fast, public)

• Still cheaters can:
– Reverse engineer checksums
– Attack with packet replay

• So:
– Encrypt packets
– Add sequence numbers (or encoded sequence

numbers) to prevent replay

Information Exposure
• Allows cheater to gain access to replicated, hidden

game data (i.e. status of other players)
– Passive, since does not alter traffic
– Example: defeat “fog of war” in RTS, see through

walls in FPS
• Cannot be defeated by network alone
• Instead:

– Sensitive data should be encoded
– Kept in hard-to-detect memory location
– Centralized server may detect cheating (example:

attack enemy could not have seen)
• Harder in replicated system, but can still share

Design Defects

• If clients trust each other, then if client is
replaced and exaggerates cheater effects,
others will go along
– Can have checksums on client binaries
– Better to have trusted server that puts

into play client actions (centralized server)
• Distribution may be the source of

unexpected behavior
– Features only evident upon high load (say,

latency compensation technique)
– Example: Madden Football

Conclusion

• Overview of problems with MCGs
• Connection to other distributed systems

– Networking resources
– Distribution architectures
– Scalability
– Security

Future Work

• Other distributed systems solutions
• Cryptography
• Practitioners should be encouraged to

participate

