Storage Area Networks: Performance and Security

Presented by Matthew Packard

July 27, 2003

SAN Architecture - Definition & DAS Limitations

Storage Area Network (SAN)

- universal storage connectivity
 - \diamondsuit free from interconnection implementation
- dedicated storage network
 - \diamondsuit reduces overhead on data networks
- Directly Attached Storage (DAS)
 - ✤ widely used host centric storage
 - high overhead on data networks
 - failover/clustering more difficult and expensive

DAS Storage Model

SAN Architecture (Cont) - Storage Design & Applications

- Storage and data traffic isolation
 out of band signaling
- ✤ Based on high capacity, redundant links
- On-the-fly storage allocation
 plug, configure, mount
- ✤ Centralized backups
 - ✤ fast, one stop repository
- ✤ Easy clustering
 - ✤ all hosts see same data, same view
- Easy failover
 - ✤ with volume managers, swap mounts and run

SAN Storage Model

SAN Architecture (Cont) - SAN vs NAS

- Network Attached Storage (NAS)
 - ✤ similar to SAN
 - \diamond direct network connection
 - ✤ uses TCP/IP protocol
 - ✤ internal filesystem
 - \Leftrightarrow shared to remote hosts (NFS/CIFS)

SAN

- direct network connection
- uses FC with encapsulated SCSI commands
- \clubsuit no internal filesystem
- $\boldsymbol{\blacklozenge}$ relies on controlling host for representation

SAN Architecture (Cont) - Interconnection: Fibre Channel

 \clubsuit Fast: 100Mb/s - 3.2Gb/s up to 10km

- ✤ FC de facto standard
 - ♦ direct connect (N_Port)
 - arbitrated loop (FL_Port)
 - \Leftrightarrow FC-AL giant bus
 - ♦ switched fabric (F_Port)
 ♦ fast
 - bridging for SCSI devices
 - ✤ FC-0 (physical)
 - FC-1 (error-free conditioning)
 - FC-2 (most important)
 - \Leftrightarrow framing, flow control, segmentation, errors
 - FC-3 (striping)
 - ✤ FC-4 (ULP)

Fibre Channel Hierarchy

- SCSI over IP
- Slow, since it uses software stack conversions
- ✤ Best for sites using existing wiring plants and long distance storage

- ✤ Intel led
 - ✤ adds ASIC support for SAN technology in processors
- \clubsuit x86 OSes have SAN support built-in for little cost
 - ✤ Linux, Solaris, and Windows
- ✤ Replacement for PCI
- \clubsuit SAN and NAS integration with VIA

- ✤ UNIX Filesystem (UFS)
 - ✤ support under Solaris, Linux, BSD, AIX, HP-UX

✤ Metadata logging

- transaction rollback on mid-write failure
- ✤ good for large volumes no fscking
- ✤ Block allocation
 - ✤ disk block allocated per requested data block

Block vs Extent Allocation

- ✤ Another UNIX filesystem
- Part of Veritas suite Volume Manager add on
- $\boldsymbol{\diamondsuit}$ Full data and metadata logging
 - ✤ data can be rolled back or forward with logs
- ✤ Extent allocation
 - ✤ series of blocks allocated per requested write
 - blocks accessed as offset from master block
 - \clubsuit slower than UFS for heavy random I/O

- ✤ Redundant Array of Inexpensive Drives (RAID)
- Performed on storage array controller
 - ✤ very fast, depending on RAID type
- ✤ Various RAID levels (0, 1, 3, 4, 5, 6, 0+1, 1+0)
 - \blacklozenge no one better than another
 - ✤ based on performance and failure resilience tolerances
 - ✤ RAID-0 (striping, no failure tolerance, fast)
 - ✤ RAID-1 (mirroring, can lose one drive, fast reads)
 - ✤ RAID-5 (distributed parity, one drive, fast reads)
 - RAID-0+1 (mirrored stripes, one drive, fast r/w)
 - ✤ RAID-1+0 (striped mirrors, one drive, fastest r/w)

RAID-0: Disk Striping

RAID-1: Disk Mirroring

RAID-5: Disk Striping w/ Dist. Parity

- ✤ RAID configuration through software
- ✤ Works on host, rather than on storage
- Slower than hardware RAID, but more options
 - ✤ tighter volume creation parameters
 - \clubsuit cluster support
 - ✤ failover support

- Performed live on SAN storage array
- ✤ Incurs heavy I/O penalties due to at least two read requests
- Does not require separate storage mechanisms or hardware
- Cannot deal with open files (databases)
 open file agents can, but not well

- Volume management intervention
 - ✤ regular RAID-1, with additional mirror set
- ✤ Data synched, then split for backup
- \clubsuit Greatly reduced I/O for backup
 - not performed on actual production storage array
- ✤ Still lacking in open file backups

- Succeeds in backing up open files
- ✤ Applications must be backup-aware
- ✤ Apps go in hot backup mode during backup
 - ✤ data files in consistent, quiet state
 - must cache client data requests during backup
- $\boldsymbol{\diamondsuit}$ Oracle 2 minute default, then clients time out

- Queueing theory study queues, determine performance
- \clubsuit Queue items w
- \clubsuit Server utilization ρ
- Avg. time in queue, server, overall T_w, T_s, T_r

Single Queue Single Server Model

SAN Performance (Cont) - QT: Multiserver Single Queue

- Performance increased over single server model
- \clubsuit Each server receives percentage of λ
- Bank line with multiple tellers example

Single Queue Multiple Server Model

SAN Performance (Cont) - QT: Modeling Disks and Nets

- Extending QT to disk subsystems and networks
- SCSI array controller and disks have queues
- ✤ FC switch, has queues per interface
- ✤ FC array has controller, FC-AL, and disk models

Disk Array Model

Storage Network Model

- ✤ Limit the access to SAN storage
 - ✤ goes against complete storage visibility
 - ✤ necessary for security, software access mechanisms
- Zoning lets switches determine which ports can talk to other ports
- LUN masking lets array controllers determine which LUNs are visible to a port
 single RAID device can contain multiple volumes (LUNs)
- ✤ LUN mapping lets host SAN drivers limit OS disk driver's access to storage

SAN Security - Cryptography: Private Key

- Cryptography obscure data through math functions
- Private key crypto same en/decryption key
 - ✤ Fast, but hard to distribute and manage key securely
- Data Encryption Standard (DES)
 - ✤ government standard since 1977
 - ✤ block cipher, 64 bits, 16 rounds, symmetric
 - ✤ aging, crackable, 56 bit key, slow in software
- ✤ Advanced Encryption Standard (AES)
 - $\boldsymbol{\blacklozenge}$ opened to public for submission
 - Rijndael accepted as standard (Twofish, Lucifer)
 - ✤ fast with small memory footprint, 16 byte block size
 - ✤ 10-14 round, 128 384 bit key

- Separation of encryption and decryption keys
 - public key published for all to use (encryption/signature verification)
 - private key held by user (decryption/signature hashing)
- RSA (Rivest, Shamir, Adleman) most widely known
 security lies with factorization of huge integers with only two, non trivial factors
 patent expired recently freely available now
- Diffie-Hellman key exchange allows for key swapping over insecure channel
 solution for private key sharing

- Alice writes data, Bob wants to verify it's from her, and was not tampered with
- Alice hashes data, encrypts with private key (signature), attaches to data
- ✤ Bob retrieves Alice's public key, decrypts hash, computes hash, compares both
- ✤ If they match, data is valid and belongs to Alice

- ✤ Kerberos developed for use in MIT's Athena project
- ✤ Allows users to authenticate to a realm
 - $\boldsymbol{\diamondsuit}$ without revealing passwords
- Authentication based on tickets
 granted by TGS and AS for application server
- Beats MS domain authentication schemes
 L0phtcrack?

Kerberos Authentication Procedure

- ✤ SANs require careful planning with focus on performance and security
- Very high speeds over redundant links
- ✤ Dynamic storage allocation
- Separation of storage/control traffic

Discussion

✤ Questions?

