On the Effectiveness of Route-Based Packet Filtering for Distributed DoS Attack Prevention in Power-Law Internets

> Kihong Park and Heejo Lee Network Systems Lab, Computer Sciences Purdue University

In Proc. ACM SIGCOMM 2001

Presented by Brad Burres

- Introduction
- Related Work
- Route-Based Packet Filtering
- Performance Evaluation
- Results
- Implementation IssuesConclusions

Introduction

- DoS Denial of Service
 - Attacker demands more resources than are available
 - We've talked about this!

You cannot prevent a DoS/DDoS attack

Protection takes two forms

Proactive – put measures in place to prevent attacks

Reactive – put systems in place to react to the attack and minimize its impact

Related Works

Resource Management (e.g. firewall/detect)
Mitigate the impact on the victim
Does not eliminate the problem
Does not (likely) deter the attacker

Ingress Filtering

- Place at all boarder gateways
- Should limit source IP address spoofing

Expensive to implement

IP Traceback (related works)

Trace back the attacking packets to their source

Traffic Analysis

Use logs at the routers to perform trace

- High storage and processing costs
- ICMP Traceback messages
 Variable length marking denotes route path
 Increased network traffic
 - Now ICMP messages can be spoofed...

IP Traceback (related works)

Probabilistic Packet Marking

- Probabilistically mark a packet by adding route info
- Constant marking field
- Efficient to implement
- Reconstructs the path of the attacker with a high probability
- Can track attacker to within 5 equally likely sites
- Reactive Only! Allows initial attack...
- Doesn't scale well with lots of attackers

Route-Based Distributed Packet Filtering (DPF)

- Break the name into pieces
- Route-Based Packet Filtering
 - Filter the spoofed packets whenever they are traversing an unexpected routing path
- Distributed Packet Filtering
 - Applying the filtering technique at certain points in the network

Key Objectives are to 1) Maximize proactive filtering,
 2) Minimize the number of possible attackers, 3)
 achieve 1&2 with smallest number of nodes possible

Illustration of Route-Based Filtering

Valid Routing path of node 2 Node 7 Attacks 4 by spoofing Node 2's address Node 6 filters the attack

Definition of Terms

Routing paths from node 2

G: network topology
T: filtering nodes
R: routing policies
F: filtering function

More Terms (quickly)

- \Box V a set of nodes in G (vertices)
- E a set of links in G (edges)
- \Box U all non-filtering nodes (so V = U + T)
- S(a,t) set of nodes an attacker can spoof that won't get filtered (attacker located at a and attacking t)
- R(u,v) the path from node u to v (in lower case, it's a specific node)
- Routing Policies
 - Tight there exists a single path between two nodes
 - Loose any loop free path between two nodes

Maximal and Semi-maximal Filters

Maximal Filter

- Use all source and dest routing paths in G
- If V nodes, then V nodes can be the source, and V-1 nodes can be the dest...
 - $\bullet V^*(V-1) = V^2 \rightarrow O(n^2)$

•
$$F_e(s,t) = \begin{cases} 0, & \text{if } e \in R(s,t); \\ 1, & \text{otherwise.} \end{cases}$$

- If edge e is on the routing path, the filter returns a 0, otherwise return a 1 and filter it.
- Semi-Maximal Filter
 - Use only the source address coming over link e
 - O(n) complexity, storage

• $F_e'(s,t) = \begin{cases} 0, & \text{if } e \in R(s,v) \text{ for some } v \in V; \\ 1, & \text{otherwise.} \end{cases}$

Final Term: Vertex Cover (VC)

\Box T=VC

- Any node in the set U has only nodes in the set T as its neighbors.
- **Finding a minimal VC**
 - NP-complete problem
 - Two well-known algorithms used for finding a VC

Performance Measures

Proactive Prevention – limiting (eliminating) the number of nodes from which no spoofed IP packets can be reached $\Phi_2(\tau) = \frac{|\{a : \forall t \in V, |S_{a,t}| \le \tau| \\ n}{}$

• $\Phi^2(1)$: fraction of AS's from which no spoofed packets coming

Reactive Traceback – A measure of the percentage of nodes which can – after receiving a spoofed packet (i.e. realizing that it's under attack) – can localize it's true source to within some minimal number

$$\Psi_1(\tau) = \frac{\left| \{t : \forall s \in V, \left| C_{s,t} \right| \le \tau \right|}{n}$$

Ψ1(5): fraction of AS's which can resolve the attack location to within 5 possible sites.

Performance Measures (cont)

Attack Volume reduction

 Captures the reduction in the volume of an attack, such as when the source IP address is randomly selected

•
$$\Theta = \frac{\left|\{(a, s, t) : s \in S_{a, t}\right|}{n(n-1)^2} = \frac{\left|\{(a, s, t) : a \in C_{s, t}\right|}{n(n-1)^2}$$

Minimizing "Spoofable" Addresses

Power-Law Networks

- Mathematically (PDF): $P[X=x] \sim x^{-(k+1)} = x^{-a}$
- Behaviorally. Think of it as "the rich get richer". If a lot of paths go through one node, than as more paths get added to the network, they too will go through that node.
- Like airport hubs because we made Denver, Chicago, and Atlanta major hubs, now almost all flights of any distance go through one of those hubs.

Performance Results

- Found using a lot of evaluation tools (dpf, inet, brite)
- Proactive Filtering Effect
 Not viable as a "perfect" filter
 Does a very good job as DDoS attack prevention technique (limiting which nodes can attack and spoof from where)
 - $\Phi 2(1) = .88$ on real Internet topologies from 97-99

Proactive Filtering on DDoS

- G: 1997~1999 Internet connectivity
- T: VC
- R: Tight
- F: Semi-maximal

On real Internet topologies from 97-99, DPF makes 88% of internet sites "unspoofable". This obviously hurts an attackers chances and makes them work much harder to even find valid attack nodes.

Attack Volume Reduction

Randomly generated spoofed addresses are filtered 99.96% of the time!!

When T=VC,
 Θ = 0.0004

Reactive Performance for Traceback
Ψ1(5) = 1 for all three real Internet Topologies
Means that an attack can be localized to no more than five nodes

Maximal vs. Semi-maximal Filters

Semi-Maximal filters are almost as good at a fraction of the cost!!

 Maximal filters require V² storage and searching for insignificant gain

Impact of Network Topology

- The authors spent a lot of time here I will not.
- Random topology (Not Power-Law Network)
 - Really bad performance. Takes lots of filter nodes and still doesn't filter a high percentage of spoofed addresses.
 - VC = 55% of total nodes!
- Inet topology
 - Has power-law characteristics
 - VC = 32% of nodes (real Internet was 18%)
 - Performance close to that reported for 97-99 Internet
- Brite topology
 - Basically, couldn't make it do what we want (or at least give us the results that we want)
 - Why put this in the paper?

Other Miscellaneous Results

All simulations were done with the "T" nodes doing Ingress Filtering
\$\Psi 1(5) != 1\$ when this is not true
\$\Psi 1(20) = 1\$, and 20 nodes is still managable

Multipath Routing degrades this solution.
 ■ For R=3, Ψ1(10) = 1

Conclusion

Distributed Route-Based Packet Filtering is effective

- Preventative minimizes the choices available to attackers
- Reactive minimizes the nodes which can originate a given attack

■ Is it Practical?

- Can be deployed incrementally
- Needs protocol support to get source routing information (i.e. BGP needs a face lift)

References

- Info on ICMP traceback: <u>http://www.nwfusion.com/news/2000/0724itrace.html</u>
- Graphs: <u>http://www.cs.cornell.edu/People/egs/syslunch-spring02/syslunchsp02/park-lee.pdf</u>
- Concepts and images: <u>cosmos.kaist.ac.kr/cs540/seminar/hjlee020911.ppt</u>
- Power Law Networks: <u>http://tisu.it.jyu.fi/cheesefactory/documents/PowerLawNetwor</u> <u>ks.ppt</u> <u>http://rio.ecs.umass.edu/~gao/ece697_0.../lect-03.01-</u> <u>properties.ppt</u>