A Study of Active Queue Management for Congestion Control

Victor Firoiu
Marty Borden
Outline

• Introduction
• Feedback Control System Background
• FCS applied to AQM
• Calculating FCS equations
• Simulation verifications
• RED configuration recommendations
• Conclusion
Introduction

• Goal - Determine “best” RED configuration using systematic approach
• Models - queue vs. feedback control system
• Mathematical analysis and fundamental Laws
• Simulation verification of model
• Recommendations
• Future directions
Feedback Control systems

• What is it? – Model where a change in input causes system variables to conform to desired values called the reference

• Why this model? - Can create a stable and efficient system

• Two basic models - Open vs. Closed loop
Feedback Control (closed loop)

- Controller
 - control function
 - error
 - reference

- Actuator
 - control input

- Monitor
 - sample

- Controlled System
 - manipulated variable
 - controlled variable
How to apply FCS to AQM

• Try to get two equations to derive steady state behavior – in our case queue function (avg. length of queue) and control function (dependent upon architecture –RED)

Control theory \rightarrow stability

• Networks as a feedback system
• Distributed & delayed feedback
Model TCP Avg. Queue Size

Fig. 1. An n-flow feedback control system
Single flow feedback system

\[\sum_{j=1}^{n} r_{t,j} \leq c \]

\[r_{t,i}(p,R_i) = T(p,R_i) \]

Becomes

\[r_{t,i}(p,R) \leq c/n, \ 1 \leq i \leq n \]
Finding the Queue “Law”

Fig. 3. An open control system with one TCP flow
Non Feedback Queue “Law”

\[R = R_0 + \bar{q}/c \]
\[p_0 = T^{-1}_p (c/n, R_0) \]

\[\bar{q}(p) = \begin{cases} \max (B, c (T^{-1}_R (p, c/n) - R_0)), & p \leq p_0 \\ 0, & \text{Else} \end{cases} \]

\[u(p) = \begin{cases} 1, & p \leq p_0 \\ T(p, R_0)/(c/n), & \text{Else} \end{cases} \]
Verification through simulation

- Using NS run multiple simulations varying link capacity, number of flows, and drop probability p
- Flows are “infinite” FTP sessions with fixed RTT
- Buffer is large enough to prevent packet loss due to overflow
- Graph mathematically predicted average queue size vs. simulation (and do the same with link utilization)
One Sample Result

LineSpeed=1.5Mb/s, NumFlows=2, c/n=750.0Kb/s
Add in Feedback

Fig. 2. A single-flow feedback control system
Feedback Control system Equilibrium point
RED as a Control Function

\[p = H(\bar{q}_e) = \begin{cases}
0, & 0 \leq \bar{q}_e < q_{\text{min}} \\
\frac{\bar{q}_e - q_{\text{min}}}{q_{\text{max}} - q_{\text{min}}} p_{\text{max}}, & q_{\text{min}} \leq \bar{q}_e < q_{\text{max}} \\
1, & q_{\text{max}} \leq \bar{q}_e \leq B
\end{cases} \]
Simulation with $G(p)$ and $H(q)$

LineSpeed=1.5Mb/s, NumFlows=20, c/n=75.0Kb/s

Fig. 8. RED average operating point: measured and predicted
RED convergence point

\[(p_s, \bar{q}_s) \]
Stable system results

Fig. 10. Instantaneous and average queue size in time, converging case
Unstable results

Fig. 11. RED average operating point situated beyond $p = 0.1$
Unstable results part 2

Fig. 13. Instantaneous and average queue size in time, oscillating case
RED configuration Recommendations

• **drop-conservative policy**: low p, high \bar{q}

• **delay-conservative policy**: low \bar{q}, high p

• Need to estimate:

 1. Line speed c
 2. Min and Max throughput per flow τ or number of flows n
 3. Min and Max packet size M
 4. Min and Max RRT R_0
Sample Control Law policy

\[\bar{q} \rightarrow G(p) \]

\[H_1 \]

\[H_2 \]
Range of Queue Laws

Fig. 15. Range of queue laws for a given queue system
Configuring Estimator of average queue Size

Consists of:

• Queue averaging algorithms
• Averaging interval
• Sampling the queue size
Queue Averaging Algorithm

- Low-pass filter on current queue size
- Moving average to filter out bursts
- Exponential weighting decreasing with age
- Estimate is computed over samples from the previous I time period – recommendations for I to follow

Average weight $= w = 1 - a^{\delta/I}$
Averaging Interval I

- Should provide good estimate of long term average assuming number of flows is constant
- Should adapt as fast as possible to change in traffic conditions
I = P is recommended

Fig. 18. Averaging two TCP flows
Sampling the Queue size

• Queue size acts like a step function
• Changes every RTT with adjustments made from information received
• “Ideal” sampling rate is once every RTT
• Recommend sampling = minimum RRT
Conclusions

• Feedback control model validated through simulations
• Found instability points and recommended settings to avoid them
• Also developed recommended RED queue size estimator settings
• Many issues still to look at in future
Thoughts

• Nice idea using model from a different discipline to analyze networks
• Good simulations to validate predicted data
• Many assumptions made to make math and model work which may make it invalid
• Limited traffic patterns and type of traffic also make the model’s value suspect
Questions?